Shorter treatment for minimal TB in children (SHINE)

A phase III randomised open trial comparing 4 vs 6 months treatment in children (+/- HIV) with smear-negative non-severe TB in Africa and India

Medical Research Council Clinical Trials Unit, University College London

Di Gibb
Diana.gibb@ucl.ac.uk
Why have children been left out of TB trials?

• Less infectious; therefore ‘less of a priority’
• Difficulties in confirming the diagnosis and measuring endpoints
• Generally effective therapy for drug-susceptible TB
• BUT:
 – *Could be over treating* the majority of childhood TB
 – *Children have the right to benefit from child-focussed research as much as adults*
TB Natural History in Children

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>No Disease</th>
<th>Pulmonary Disease</th>
<th>TBM/miliary Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>50</td>
<td>30-40</td>
<td>10-20</td>
</tr>
<tr>
<td>1-2</td>
<td>70-80</td>
<td>10-15</td>
<td>2-5</td>
</tr>
<tr>
<td>2-5</td>
<td>95</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>5-10</td>
<td>98</td>
<td>2</td>
<td><0.5</td>
</tr>
<tr>
<td>>10</td>
<td>80-90</td>
<td>10-20</td>
<td><0.5</td>
</tr>
</tbody>
</table>

Adapted from Marais et al 2004 IJTD. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era

Risk of TB Disease Following primary infection
TB Natural History in Children

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>No Disease</th>
<th>Pulmonary Disease</th>
<th>TBM/miliary Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>50</td>
<td>30-40</td>
<td>10-20</td>
</tr>
<tr>
<td>1-2</td>
<td>70-80</td>
<td>10-15</td>
<td>2-5</td>
</tr>
<tr>
<td>2-5</td>
<td>95</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>5-10</td>
<td>98</td>
<td>2</td>
<td><0.5</td>
</tr>
<tr>
<td>>10</td>
<td>80-90</td>
<td>10-20</td>
<td><0.5</td>
</tr>
</tbody>
</table>

Adapted from Marais et al 2004 IJTL. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era
TB Natural History in Children

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>No Disease</th>
<th>Pulmonary Disease</th>
<th>TBM/miliary Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>50</td>
<td>30-40</td>
<td>10-20</td>
</tr>
<tr>
<td>1-2</td>
<td>70-80</td>
<td>10-15</td>
<td>2-5</td>
</tr>
<tr>
<td>2-5</td>
<td>95</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>5-10</td>
<td>98</td>
<td>2</td>
<td><0.5</td>
</tr>
<tr>
<td>>10</td>
<td>80-90</td>
<td>10-20</td>
<td><0.5</td>
</tr>
</tbody>
</table>

Risk of TB Disease Following primary infection

Adapted from Marais et al 2004 IJTL. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era
TB Natural History in Children

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>No Disease</th>
<th>Pulmonary Disease</th>
<th>TBM/miliary Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>50</td>
<td>30-40</td>
<td>10-20</td>
</tr>
<tr>
<td>1-2</td>
<td>70-80</td>
<td>10-15</td>
<td>2-5</td>
</tr>
<tr>
<td>2-5</td>
<td>95</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>5-10</td>
<td>98</td>
<td>2</td>
<td><0.5</td>
</tr>
<tr>
<td>>10</td>
<td>80-90</td>
<td>10-20</td>
<td><0.5</td>
</tr>
</tbody>
</table>

*Adapted from Marais et al 2004 IJLTD. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era

Risk of TB Disease Following primary infection
TB Natural History in Children

Risk of TB Disease Following primary infection

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>No Disease</th>
<th>Pulmonary Disease</th>
<th>TBM/miliary Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>50</td>
<td>30-40</td>
<td>10-20</td>
</tr>
<tr>
<td>1-2</td>
<td>70-80</td>
<td>10-15</td>
<td>2-5</td>
</tr>
<tr>
<td>2-5</td>
<td>95</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>5-10</td>
<td>98</td>
<td>2</td>
<td><0.5</td>
</tr>
<tr>
<td>>10</td>
<td>80-90</td>
<td>10-20</td>
<td><0.5</td>
</tr>
</tbody>
</table>

*Adapted from Marais et al 2004 IJTL. The natural history of childhood intra-thoracic tuberculosis: a critical review of literature from the pre-chemotherapy era

<table>
<thead>
<tr>
<th>Age (yrs)</th>
<th>Ghon/LN</th>
<th>Bronchial</th>
<th>Effusion</th>
<th>“Adult-type”</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2-5</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>5-10</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>>10</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Pulmonary disease
Question:
Can we safely reduce 6 months treatment to 4 months in children with smear-negative non-severe (minimal) TB?
Shorter treatment for minimal TB – Why Children?

A controlled trial of 3-month, 4-month, and 6-month regimens of chemotherapy for sputum-smear-negative pulmonary tuberculosis. Results at 5 years. Hong Kong Chest Service/Tuberculosis Research Centre, Madras/British Medical Research Council.

2% relapse rate in smear-negative culture-positive drug-sensitive TB

TB in children:
- 75% intrathoracic disease
- 85% smear-negative
- Most lymph-node disease & paucibacillary
- Recently increased TB drug doses in children
- Shorter treatment may be sufficient for drug sensitive TB

Potential benefits:
- Reduced toxicity
- Reduced drug-drug interactions with anti-retrovirals
- Reduced costs to families and health services
- Improved adherence
3405 participants from 3 adult trials of treatment shortening:

- 4-month regimens were non inferior to 6 months in individuals with <2+ sputum +
- Stratified medicine approach: regimen shortening for mild disease (? 4 months) high smear grade / cavitation may need > 6 months
Children aged <16 years with minimal TB (n=1,200)

Randomise (1:1)

Arm A, 4 month (n=600)
Intensive phase: 8 weeks HRZ(E)
Continuation Phase: 8 weeks HR

Arm B, 6 month (n=600)
Intensive phase: 8 weeks HRZ(E)
Continuation Phase: 16 weeks HR

18 months follow-up for primary outcome assessment

All anti-TB drugs prescribed as per WHO 2010 dosing guidelines using new weight bands
New fixed dose combinations

Intensive Phase:
• RMP 75mg + INH 50mg + PZA 150mg

Continuation Phase:
• RMP 75mg + INH 50 mg

H: 10mg/kg (range 10–15mg/kg) max 300mg/day;
R: 15mg/kg (range 10–20mg/kg) max 600mg/day;
Z: 35mg/kg (30–40mg/kg);
E: 20mg/kg (15-25mg/kg)
Updated WHO weight bands

<table>
<thead>
<tr>
<th>Weight band</th>
<th>Numbers of tablets</th>
<th>Intensive phase: RHZ 75/50/150*</th>
<th>Continuation phase: RH 75/50</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-7 kg</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8-11 kg</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>12-15 kg</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16-24 kg</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>25+ kg</td>
<td>Adult dosages recommended</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ethambutol should be added in the intensive phase for children with extensive disease or living in settings where the prevalence of HIV or of isoniazid resistance is high.

Population

Age <16 years
Non-severe TB, smear negative; known HIV status
Decision to treat with standard 1st line regimen; no known resistance

Primary endpoints:

Efficacy:
Unfavourable outcome:
TB treatment failure
Relapse/re-infection or Death

Safety:
Grade 3/4 adverse events & SAEs

Secondary endpoints:

– Mortality
– Adverse drug reactions up to 30 days of completing treatment
– Suppressed HIV viral load at 24 and 48 weeks in HIV (+)
– Bacterial infections requiring hospitalisation
– Adherence and acceptability
– Unfavourable outcome in those with confirmed TB
The ERC (blinded to treatment arm) has three functions:

1. To determine (in a consistency and independent way) the TB diagnosis at enrolment across sites (for the key secondary analysis of those with definitive TB)

 Baseline Adjudication of TB or not TB

2. To adjudicate cause of death based on all available sources of data

 Cause of Death

3. To determine the primary endpoint classification for all patients as favourable, unfavourable or unassessable

 Primary Endpoint Classification
SHINE Clinical Sites

PK substudies:
- Nijmegen, Netherlands
- UTH, Cape Town, SA

Coordination:
- MRC CTU at UCL, London, UK
Timelines and recruitment

SHINE enrolment: all sites (N=1204)

- **First child randomised 1st July 2016**

- **Set up**
 - 2 years

- **Recruitment**
 - 2 years

- **Follow up**
 - 72 weeks

- **Close out**
Timelines and recruitment

SHINE enrolment: all sites (N=1204)

First child randomised 1st July 2016
Enrolment completed 20 July 2019
Baseline Data

• Median Age 3.5 years (1.5-7.0 yr)
 – India 7.4 years, IQR (4.4-10.5); Africa 3.0 years, IQR (1.3-6.3)
• 52% male
• HIV status: 131 (11%) HIV infected (Zambia and Uganda)
• 1122 (93%) had abnormal CXR (local reports) TB Symptoms:
 • 86% present with respiratory Symptoms:
 – 62% cough >2weeks
 – 51% fever
 – 52% poor feeding/appetite (5% severe malnutrition)
 – 51% had TB contact in last year, (93% with pulmonary TB)
• 77% had Mantoux test (despite world-wide shortage): 60% tested positive
 – IGRA tests done in South Africa only (n=34)
• Microbiological samples on all randomised children
 – 163 (14%) confirmed TB (GeneXpert and/or Culture)
Trial Management Committee
Lusaka, Zambia
September ‘18
Trial Management Committee
Lusaka, Zambia
September ‘18

SHINE results in 2020
Hopefully... timing to inform new WHO guidelines
Sub-studies
Shorter treatment for minimal TB in children (SHINE)

Vidya Mave, MD, MPH & TM
BJ Government Medical College-Johns Hopkins University Clinical Research Site, Pune, India
vidyamave@gmail.com
Sub-studies

• PK sub-studies
 – PK 2: Interactions: anti-TB vs anti-HIV (South Africa, Zambia)
 – Lopinavir/ritonavir TDS PK: Modified LPV/r dosing with Rifampicin in HIV-infected children (Zambia)
 – Hair PK – INH & PZA concentration is hair samples-(All sites)

• Palatability/acceptability sub-studies (SA)
 – Explore patient, caregiver and healthcare worker experience of using FDCs
 – Explore child and caregiver experiences of the SHINE treatment and adherence

• Health Economics sub-study
 – Cost/cost effectiveness of shorter treatment

• Biomarker sub-study
• Chest X-ray sub-study
• Microbiology sub-study
• Pharmacogenetics sub-study
Sub-study Leads

Biomarker lead:
Anneke Hesseling, Anne-Marie Demers, DTTC South Africa

Social Science lead:
Graeme Hoddinott, DTTC South Africa

CXR lead:
Megan Palmer, DTTC South Africa

Microbiology lead:
Anne-Marie Demers, DTTC South Africa

Microbiology (Xpert Ultra) lead:
Willy Ssengooba, MUJHU Uganda

PK lead:
Helen McIlleron, UCT South Africa

PK lead collaborator (India):
Hemanth Kumar AK, NIRT Chennai

Hair PK lead:
Vidya Mave, BJMC-JHU CRS Pune

LPV/r PK lead:
Chishala Chabala, UTH Zambia
PK Sub-studies 1 and 2

• Describe PK of the first-line drugs in HIV- children <37 kg dosed according to currently recommended weight bands
 – New paediatric FDCs in recommended weight band-based doses
 – Single intensive PK (1, 2, 4, 6, 8 and 12 hours after drug intake)

• Evaluate PK interactions between anti-TB and ARVs in all ages of HIV/TB co-infected children
 – 2 intensive PK sessions of ARVs (EFV; LPV/r)
 • 1st PK during TB treatment; 2nd PK 4 weeks post TB treatment
PK 1 results in HIV negative (60 African, 25 Indian); full PK Curves

Results presented by Dr C Chabala at PK workshop (London, Sept 2019) and will also be presented by Helen McIlneron: *Session SP-20-B4 Therapeutic TB trials in children: improving knowledge and access (31/10/19 4pm)*
Lopinavir/ritonavir TDS PK (Zambia Only)

• To evaluate whether modified LPV/r from BD to TDS dosing will achieve adequate blood levels of LPV/r in children co-treated with RIF
• Evaluate acceptability and tolerability of TDS LPV/r dosing
• Methods
 – 2 intensive PK sessions of ARVs - During and Post TB treatment
 – 9 recruited of a target sample size of 20
Hair PK sub-study

• To assess the utility of hair assay for INH & PZA as a drug adherence and exposure tool
• Assess relationship between INH & PZA hair concentrations vs TB treatment outcomes.
• Method
 – Hair samples collected at 4, 8, 16 and 24 weeks
 – 414 participants consented

Advantages:
• Estimates an average level of drug exposure over weeks to months
• Non invasive and painless to collect.
• No special skills to collect or cold storage/shipment requirements.
• No bio-hazardous constraints – easy for storage and shipment.
Palatability/acceptability sub-studies
(n=20 days of observations + 14 key informant discussions)

Aim: To explore the various aspects of using the FDCs; understandings of TB, treatment adherence with regard to the patient, caregiver and healthcare worker experience

Wademan D, et al. IJTLD manuscript in press
• In general, the FDC was adequately palatable
• The FDC compares favourably to TB treatment caregivers have seen other people use in their family context

• Additional analysis
 – **Planned outcome analyses:
 – Risks “change in acceptability”
 – Acceptability as a predictor of adherence
Biomarker sub-study

- To test host markers in serum and whole blood RNA to predict early and late treatment outcomes

- Samples collected at wk 0, 2, 8, 16 and 24 and at relapse/recurrence/early exit
 - serum collected on 995 children
 - samples in Paxgene tubes collected in only in South Africa

- Assays include:
 - cytokine and metabolite measurements in serum
 - multiplex qPCR on ex vivo RNA
 - microRNA in serum and whole blood
 - collaboration with Tony Hu (Tulane University) and other collaborators to evaluate different biomarkers
Microbiology

• Microbiology: TB testing harmonized across laboratories using key elements in TB laboratory procedures that:
 – Have the greatest impact on microbiology endpoints of clinical trials
 – Allow for comparison of results among all trial sites (or from one study to another)
 – Provide accurate test results to ensure safety of trial participants

• Analysis of baseline TB microbiology ongoing

Willy Ssengooba et al. Accuracy of Xpert Ultra in the diagnosis of pulmonary TB among children in Uganda:

SOA-17-C10 Finding the missing with TB: many paths to the same truth, 2nd November, 2PM
Chest X-ray sub-study

- Investigate CXR interpretation between clinicians and experts
 - Experts are double or triple reading all CXRs at baseline for ERC adjudication of TB diagnosis

- CXR features of children diagnosed with non-severe PTB on the SHINE trial
 - By age / by HIV status / by microbiological confirmation status / by country
 - Methodology of CXR reading on clinical trials for paediatric TB
 - Image library as reference
Pharmacogenetics substudy

- Evaluate genetic differences in drug metabolic pathways affecting individual responses to drugs in terms of therapeutic and adverse effects.

- To determine if there are differences between African and Indian ethnic groups.

- Sample collection complete:
 - 149 / 149 India
 - 904 / 1055 Africa
Acknowledgements

SHINE study participants and study teams in Zambia, Uganda, South Africa, and India:

- **University Teaching Hospital, Children’s Hospital, Lusaka, Zambia**: C. Chabala, V. Mulenga, J. Lungu, M. Kapasa, K. Zimba, K. Zymbo, C. Tembo, S. Kunda, E. Shingalili, T. Chipoya, F. Mwanakalanga, E. Chambula, J. M. Hankombo, M. Malama Kalumbi

- **Makerere University - Johns Hopkins University Research Collaboration, Kampala, Uganda**: E. Wobudeya, P. Musoke, R. Mboizi, W. Nansamba, G. Businge

- **Desmond Tutu TB Centre, Stellenbosch University, South Africa**: A. C. Hesseling, M. Palmer, M. M. van der Zalm, J. Workman, A. M. Demers, H. S. Schaaf, E. Walters, W. Zimri, G. Hoddinott

- **Byramjee Jeejeebhoy Government Medical College, Pune, India**: A. Kinikar, V. Mave, A. P. Raichur, A. Nijampurkar, S. Khan

- **Indian Institute of Research in Tuberculosis, Chennai, India**: S. Hissar, J. Bency, P. K. Bhavani, G. Prathiksha, D. Baskaran, V. Mythily, H. Kumar, S. Elilarasi, S. Balaji, M. A. Aravind, J. Ganesh

Division of Clinical Pharmacology, University of Cape Town: H. McIlleron

Radboud University Medical Center, Nijmegen, The Netherlands: R. Aarnoutse

MRC CTU at UCL: D. M. Gibb, A. Turkova, A. Crook, L. Choo, G. Wills, K. LeBeau, C. McGowan

Endpoint Review Committee: S. Welch, S. Graham, J. Seddon, E. Whittaker, S. Anderson, L. Grandjean

Independent Data Monitoring Committee: T. Peto, A. Mwinga, K. Fielding

Trial Steering Committee: P. Mugyenyi, J. Darbyshire, P. Clayden, P. Donald, V. Singh, M. Grzemska, S. Swaminathan

Funders: Joint Global Health Trials Scheme of the Department for International Development, UK (DFID), the UK Department of Health and Social Care (DHSC), the Wellcome Trust, and the Medical Research Council (MRC UK), Grant number MR/L004445/1; and TB Alliance.

Sponsor: University College London, UK

Trial drugs: Manufactured by Macleods Pharmaceuticals Ltd.
Thankyou

Any Questions?
Sample size

- Assumptions on mortality and TB recurrence in HIV(-) and HIV(+) children - overall 8%
- 6% non-inferiority margin
- 90% power, 5% two-sided alpha
- 10% loss to follow-up
- Plus assumption that ~20% of children will not actually have TB as adjudicated by blinded independent ERC (secondary analysis excluding children with non-TB)

= 1200 children