MATERNAL TB AND NEONATAL IMPLICATIONS

Jyoti S. Mathad, MD, MSc
Weill Cornell Medicine
Child and Adolescent TB Working Group
Hyderabad, India

30 October, 2019
CC: fever

HPI: 8 day old male born in Taiwan at 37 weeks gest.
 - Fever for 2 days
 - No respiratory or GI symptoms
 - No known sick contacts

Exam: T 39°C, other vitals stable
 - Clear lungs, no HSM

Labs:
 - WBC 17,500/uL
 - CRP 7.3 mg/dL
 - CSF and all cultures negative

A/P: Sepsis -> Cefotaxime/ampicillin

Yeh, Frontiers Pediatrics 2019
Exam: still febrile
 - Abdominal distention

Labs:
 - HSV, EBV, CMV, Hep
 - CRP 14.4 mg/dL

CXR:

Plan: Change abx to Vanc/Ceftazidime

Yeh, Frontiers Pediatrics 2019
HOSPITAL COURSE: CONT’D

- **Day 6**: CT with R pleural effusion
 - Parents refused drainage

- **Day 11**: Parents allow gastric lavage -> 1/3 with few AFB

- **Day 15**: CT c/a/p with patchy consolidation in RUL, multiple bilateral pulmonary nodules, splenic and hepatic nodules
 - Treatment: INH, RIF, PZA
 - Cultures ultimately grow DS TB

Delay in diagnosis:
- ✔ Reluctance for invasive procedures
- ✔ Symptoms overlap with sepsis

Yeh, Frontiers Pediatrics 2019
CONGENITAL TB

Diagnostic criteria for congenital\(^1\):
Proven TB lesions with...
- In the first week of life, OR
- Primary hepatic complex or caseating granulomas in the liver, OR
- TB infection in placenta or maternal genital tract, OR
- Contact investigation excludes postnatal transmission

Published cases in English: <350
- 80% in Asia

<table>
<thead>
<tr>
<th>Signs & Symptoms(^2)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever</td>
<td>64%</td>
</tr>
<tr>
<td>Resp. distress</td>
<td>64%</td>
</tr>
<tr>
<td>Hepatosplenomegaly</td>
<td>65%</td>
</tr>
<tr>
<td>Lethargy/irritable</td>
<td>40%</td>
</tr>
<tr>
<td>Poor feeding</td>
<td>39%</td>
</tr>
<tr>
<td>Cough</td>
<td>35%</td>
</tr>
<tr>
<td>Failure to thrive</td>
<td>25%</td>
</tr>
<tr>
<td>Pale</td>
<td>25%</td>
</tr>
<tr>
<td>Abd. Distention</td>
<td>22%</td>
</tr>
<tr>
<td>Lymphadenopathy</td>
<td>20%</td>
</tr>
</tbody>
</table>

\(^1\)Cantwell NEJM 1994; \(^2\)Peng Pedi Pulm 2011
NEONATAL TB DIAGNOSIS

- 80% have abnormal chest imaging\(^1\)
 - 50% miliary or nodular

- AFB/culture/PCR
 - 75% yield if from early AM gastric aspirate\(^2\)

- Mortality remains HIGH\(^1\)
 - 53% before 1994
 - 34% post 1994

\(^{1}\) Peng, Pedi Pulm 2011; Starke Pediatrics 1989
75% of mothers who transmit TB to their babies DON’T KNOW IT

Mortality of infants born to mothers with TB was 2.2x higher if mothers were asymptomatic

NEONATES GET TB FROM THEIR MOMS

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average onset age (days)</td>
<td>20.7 ± 20.2</td>
</tr>
<tr>
<td>Median</td>
<td>15</td>
</tr>
<tr>
<td>Maternal TB</td>
<td>157 (92%)</td>
</tr>
<tr>
<td>Prepartum</td>
<td>36 (22%)</td>
</tr>
<tr>
<td>Postpartum</td>
<td>121 (77%)</td>
</tr>
</tbody>
</table>

Maternal TB type

- Miliary: 53
- Genital or placenta: 45
- TB pleurisy: 22
- TB meningitis: 12
- Infiltrative pulmonary TB: 22
- Unknown/Other: 8

Peng, Pedi Pulm 2011; Yeh Frontiers Pedi 2019
Mother developed dry cough at 1 week postpartum, weakness

Day 24 postpartum: altered mental status
 - AFTER baby was diagnosed!

Labs:
 - HIV neg
 - Renal failure
 - Liver failure
 - AFB+, PCR for MTB+

Treatment: RIPE
 - Died 3 days later
IMMUNE CHANGES MASK SYMPTOMS

<table>
<thead>
<tr>
<th>First trimester</th>
<th>Second trimester</th>
<th>Third trimester</th>
<th>Postpartum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monocytes and phagocytosis</td>
<td>Monocytes and phagocytosis</td>
<td>Dendritic cells</td>
<td>Monocytes and phagocytosis</td>
</tr>
<tr>
<td>Polymorphonuclear cells</td>
<td>Polymorphonuclear cells</td>
<td>α-Defensins</td>
<td>Polymorphonuclear cells</td>
</tr>
<tr>
<td>Regulatory T cells</td>
<td>Regulatory T cells</td>
<td>CD4+ T cells</td>
<td>Regulatory T cells</td>
</tr>
<tr>
<td>CD8+ T cells</td>
<td>CD8+ T cells</td>
<td>CD8+ T cells</td>
<td>CD8+ T cells</td>
</tr>
<tr>
<td>B cells</td>
<td>B cells</td>
<td>B cells</td>
<td>B cells</td>
</tr>
<tr>
<td>Natural killer cells</td>
<td>Natural killer cells</td>
<td>Natural killer cells</td>
<td>Natural killer cells</td>
</tr>
<tr>
<td>Cytotoxicity</td>
<td>Cytotoxicity</td>
<td>Cytotoxicity</td>
<td>Cytotoxicity</td>
</tr>
</tbody>
</table>

- Increased risk of malaria, listeria
- Increased severity of flu, varicella

Figure adapted from Kourtis NEJM 2014
PREGNANCY AND INFANT OUTCOMES

Pregnancy
- Pre-eclampsia & eclampsia (2 fold)
- Vaginal bleeding (2 fold)
- Hospitalization (12 fold)
- Miscarriage (10 fold)
- Mortality
 - 25 fold for HIV-uninfected
 - 37 fold for HIV-infected

Infant
- Low birth weight (2 fold)
- Lower Apgar scores
- Prematurity (2 fold)
- Small for gestational age (2 fold)
- Infant HIV (2 fold)
- Congenital TB (rare)
- Infant mortality (3.4 fold)

Jana NEJM 1999; Pillay Lancet 2000; Khan AIDS 2001; Gupta JID 2011; Mathad CID 2012
TREATMENT OF PULMONARY TB IN PREGNANCY

<table>
<thead>
<tr>
<th></th>
<th>HIV negative</th>
<th>HIV positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Burden¹</td>
<td>INH 5mg/kg/d x 9 mo RIF 10mg/kg/d x 9mo EMB wt-based x 2 mo B6 25mg/d x 9 mo</td>
<td>INH 5 mg/kg/d x 6 mo RIF 10 mg/kg/d x 6 mo EMB 15mg/kg/d x 2 mo PZA 25mg/kg/d x 2 mo B6 10-25mg/d x 6 mo</td>
</tr>
<tr>
<td>High Burden²</td>
<td>INH 300 mg/d x 6 mo RIF 600 mg/d x 6 mo EMB wt-based x 2mo PZA wt-based x 2 mo B6 25mg/d x 6 mo</td>
<td>INH 5 mg/kg/d x 6 mo RIF 10 mg/kg/d x 6 mo EMB 15mg/kg/d x 2 mo PZA 25mg/kg/d x 2 mo B6 10-25mg/d x 6 mo</td>
</tr>
</tbody>
</table>

DIFFERENCE IN PZA guidance

NO MDR-TB guidelines

¹ CDC, ATS, IDSA guidelines; ² WHO, British thoracic Society, RNTCP and IUATLD guidelines
BREASTFEEDING?

- Breast feeding allowed if on 1st line
 - **NOT** recommended with rifabutin or fluoroquinolones
 - *No evidence for other DR medications*

- If mother suspected of having TB, separate from infant\(^1\)
 - Can resume when smear negative (after 2-3 weeks of treatment), or infant started on TB treatment
 - Baby should get INH (3-6 months) + BCG

WHO 1998
TREATMENT OF LTBI IN PREGNANCY

<table>
<thead>
<tr>
<th>HIV negative</th>
<th>HIV positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low burden</td>
<td>INH 300mg + Vit B6 (10-25mg) daily for 6-9 mos(^1,2)</td>
</tr>
<tr>
<td>Defer until postpartum, unless recent household contact</td>
<td></td>
</tr>
<tr>
<td>High burden</td>
<td>INH 300mg + Vit B6 (10-25mg) daily for 6-9 mos(^1,2)</td>
</tr>
<tr>
<td>No official guidance</td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) CDC 2013, \(^2\) WHO 2010
956 HIV+ pregnant women from 8 countries
- Randomized to immediate versus deferred (12 wk PP) IPT

Gupta A, NEJM 2019
P2001: 3HP IN PREGNANT/POSTPARTUM WOMEN

<table>
<thead>
<tr>
<th>2nd trimester</th>
<th>3rd trimester</th>
<th>Postpartum</th>
<th>Infants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cohort 1: Screening Visit</td>
<td></td>
<td></td>
<td>Newborn visit (within 3d)</td>
</tr>
<tr>
<td>Enrollment Visit (Intensive PK, n=25)</td>
<td>Cohort 2: Screening Visit</td>
<td></td>
<td>Monthly visits (until 24 wks)</td>
</tr>
<tr>
<td>Weekly Visits with DOT dosing for 11 weeks</td>
<td>Enrollment Visit (Intensive PK, n=25)</td>
<td></td>
<td>Study exit visit</td>
</tr>
<tr>
<td>Last dose visit (week 12 visit) with Sparse PK sampling</td>
<td>Weekly Visits with DOT dosing for 11 weeks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly visits until 24 weeks postpartum</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Interim analysis when n=12**

Study visit

Monthly visits until 24 weeks postpartum

Last dose visit (week 12 visit) with Sparse PK sampling

Note: DOT (Direct Observation Therapy) dosing for 11 weeks.
IMPAACT 2025: 1HP VS. 3HP IN PREGNANT VS. POSTPARTUM WOMEN

Regimens
- Arm 1: 1HP Antepartum
- Arm 2: 3HP Antepartum
- Arm 3: 1HP Postpartum
- Arm 4: 3HP Postpartum

Primary Outcomes*
- Arm 1 vs Arm 2
- Arm 3 vs Arm 4

- Composite: Maternal safety (including all-cause mortality), pregnancy outcomes (Arm 1 vs Arm 2 only), Rx discontinuation

Outcomes assessed
- PP, postpartum; HP, Isoniazid and rifapentine; TPT, Tuberculosis preventive therapy; Rx, treatment
WHAT WE NEED

<table>
<thead>
<tr>
<th>Neonatal</th>
<th>Maternal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Better screening guidelines</td>
<td>Better screening guidelines</td>
</tr>
<tr>
<td>Diagnostics (POC)</td>
<td>Diagnostics- POC and improved sensitivity</td>
</tr>
<tr>
<td>Evidence-based treatment guidelines (DS and DR)</td>
<td>Evidence-based treatment guidelines (DR, PZA)</td>
</tr>
<tr>
<td>PK studies from breast milk</td>
<td></td>
</tr>
</tbody>
</table>

- Better screening guidelines
- Diagnostics (POC)
- Evidence-based treatment guidelines (DS and DR)
- PK studies from breast milk
- Better screening guidelines
- Diagnostics- POC and improved sensitivity
- Evidence-based treatment guidelines (DR, PZA)
Maternal and child lung health working group

- Thursday, October 31 @ 7:45am
- Room: MR G.03 & G.04

Other sessions:

- Friday, November 1
 - TB preventive therapy: Is it safe and how should we implement it?
 - 10:30-12: Room: MR G01 & G02
 - TB in pregnancy: optimising diagnosis and treatment
 - 12:15-1:15, Eposter area 2

- Saturday, November 2
 - Confronting the crisis: emerging research in maternal-child TB
 - 10:30-12, Room G05&G06
 - Meet the Expert, IPT in Mothers and children: Yael Hirsch-Moverman, Jyoti Mathad
 - 12:15-1:15, MR 2.03&2.04