BACKGROUND

Direct sputum smear microscopy is the most widely used test for the diagnosis of pulmonary tuberculosis (TB), available in most primary health care laboratories at health centre level. The majority of laboratories use conventional light microscopy to examine Ziehl-Neelsen stained direct smears, documented to be highly specific in areas with a high prevalence of TB but with varying sensitivity (20-80%). Besides being labour-intensive, direct sputum smear microscopy may have considerable patient costs and inconvenience associated with the need to submit multiple sputum specimens over a period of up to three days. A number of TB control programmes have reported high rates of initial patient default as a result.

Simple rapid diagnostics that can replace direct smear microscopy at the lower levels of health services are urgently needed; however, it is also recognized that these are unlikely to become available in the short to medium term. Considerable recent research has therefore focused on ways to improve smear microscopy and its yield for TB case-finding. A series of systematic reviews commissioned in 2005 by the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR) covered three ways of improving sputum microscopy: sputum processing methods, fluorescence microscopy, and more efficient direct examination of specimens. An Expert Consultation by WHO was subsequently convened in September 2005 to consider the evidence in these reviews, with the following findings and recommendations:

Sputum processing methods

The systematic review on sputum processing methods reported that chemical processing (by bleach) prior to concentration by centrifugation or overnight sedimentation improved the sensitivity of smear microscopy by 18% and 23%, respectively. In all studies reported, sensitivity for processed smears was higher than for direct smears, including one study involving HIV-infected individuals (with mycobacterial culture as gold standard) where sensitivity was increased by 11%. The Expert Consultation did, however, not recommend the use of bleach with centrifugation or sedimentation at that time because of large variations in study methodology and inconsistencies in the results reported. Additionally, concerns were raised about the safety of centrifugation-based methods at peripheral laboratory level, and the feasibility of implementing such methods on a large-scale.

The Expert Consultation called for research to develop standardized methods and understand the basis of the wide variability in performance reported. A number of research groups have addressed this in studies since 2005.

Fluorescence microscopy

The systematic review of fluorescence microscopy (FM) reported sensitivity to be 10% higher than conventional ZN microscopy, and noted that examination of fluorochrome-stained smears took 25% of the time taken to examine ZN-stained smears. The Expert Consultation in 2005 recommended that FM be considered at all levels of the health system, particularly in high HIV prevalence settings and in settings with high laboratory workload. However, it was also acknowledged that FM based on the technology available in 2005 (expensive microscopes with
mercury vapour light sources) would be difficult to implement in resource-poor settings. In addition, concern was expressed about the lack of internationally-agreed methods for external quality assessment of FM.

The Expert Consultation called for research to develop fluorescence microscopes that could overcome the limitations of existing equipment, particularly those related to capital costs and maintenance needs. Since then it has been shown that low-cost ultra-bright light-emitting diodes (LEDs) with a long lifespan could replace expensive mercury vapour lamps and enable the development of microscopy systems that are substantially less expensive than conventional FM, offering the possibility for widespread use of LED-based FM in resource-limited settings. In view of these potential advantages, several companies have developed inexpensive, robust LED microscopes or LED attachments for routine use in high-burden countries. Preliminary data suggest that LED microscopy is feasible and as accurate as standard FM and field evaluation studies have been completed in several countries.

**Serial sputum specimen examination ('front-loading')**

A systematic review of the yield of serial sputum specimen examinations for the diagnosis of TB confirmed that the majority of TB cases were detected with the first sputum specimen (85.8%), while the average incremental yield of the second and third sputum specimen was 11.9% and 3.1% respectively. The Expert Consultation in 2005 concluded that, although the evidence was compelling, the examination of three specimens would be necessary as long as the definition of a smear-positive case required two positive smears.

The Expert Consultation called for further research on the sensitivity and specificity of a revised case definition based on one positive smear. This research was subsequently undertaken by a number of international partners and presented to the WHO Strategic and Technical Advisory group for TB (STAG-TB). In 2007, the definition of a smear-positive case was revised and the minimum number of sputum specimens to be examined reduced from three to two in settings where a well-functioning external quality assurance system exists, the workload is high, and human resources are limited. This approach greatly reduces the workload in laboratories, a considerable advantage in countries with high HIV prevalence.

The Expert Consultation in 2005 also called for research on the optimal timing of specimen collection to minimise delays in the patient diagnostic pathway. Currently, most sputum specimens - following the spot-morning-spot system - are examined on the second day that the patient presents. Alternatively, frontloading microscopy (also called 'same day' or 'one-stop' microscopy) involves sputum smear microscopy approaches that entails the majority (or all) of the specimens being examined on the first day. Studies to determine whether the number of patient visits required for standard TB diagnosis can be reduced, and whether the delay in diagnosis can be cut from three days to one day, have subsequently been conducted, also investigating the possibility that drop-out from the diagnostic pathway can be significantly reduced.

**WORLD HEALTH ORGANIZATION: EVIDENCE-BASED PROCESS FOR POLICY GUIDANCE**

In order to facilitate rapid policy guidance on the use of new diagnostic tools or novel approaches using existing tools, WHO has recently developed a systematic, structured, evidence-based process. The first step constitutes a systematic review and meta-analysis of available data, using standard methods appropriate for diagnostic accuracy studies. The second step involves the convening of an Expert Group to evaluate the strength of the evidence base and recommend operational and logistic considerations for mainstreaming such tools/approaches into national TB control programmes, and/or identify gaps to be addressed in future research. The third and final step involves WHO policy guidance on the use of these tools/approaches, presented to STAG-TB for endorsement and subsequent dissemination to member states for implementation.
MEETING OBJECTIVES

- To review the evidence base and evaluate data from systematic reviews (including updates to the 2005 systematic reviews) commissioned by WHO on sputum processing methods, frontloaded microscopy and LED microscopy;

- To identify the implications of adopting such methods/approaches for laboratory infrastructure development, human resource requirements, and research gaps needed for programmatic implementation of these tools/approaches;

- To outline potential issues to be addressed by WHO in subsequent policy recommendations.

EXPECTED OUTCOMES

- Evidence-based recommendations on the use of sputum processing methods, frontloaded microscopy and LED microscopy to improve sputum smear microscopy for TB diagnosis;

- Consensus on laboratory infrastructure, human resource requirements and further operational research data needed for programmatic implementation of sputum processing methods, frontloaded microscopy and LED microscopy;

- Development of WHO policy guidance on the use of sputum processing methods, frontloaded microscopy and LED microscopy to improve sputum smear microscopy for TB diagnosis.
# PROVISIONAL AGENDA

**Chair:** P Nunn & K Weyer, WHO  
**Rapporteur:** B Squire

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 08:40</td>
<td>Welcome</td>
<td>M Raviglione/R Ridley</td>
</tr>
</tbody>
</table>
| 08:40 - 08:50 | Introduction  
Meeting objectives and expected outcomes | K Weyer                       |
| 08:50 - 09:00 | Declaration of interest by Expert Group members                         | Chair                         |
| 09:00 - 09:20 | Grading quality of evidence and strength of recommendations: Brief overview of GRADE | K Steingart                  |
| 09:20 - 09:30 | Background to current systematic reviews and methods used               | K Steingart                  |
| 09:30 - 10:00 | Systematic review: Frontloaded sputum microscopy for the diagnosis of pulmonary TB | A Cattamanchi               |
| 10:00 - 10:30 | Discussion                                                              | All                           |
| 10:30 - 11:00 | Draft recommendations                                                   | All                           |
| **BREAK 11:00 - 11:15** |                                                                     |                               |
| 11:30 - 12:00 | Systematic review: Sputum processing methods to improve the sensitivity of smear microscopy for tuberculosis | A Cattamanchi               |
| 12:00 - 12:30 | Discussion                                                              | All                           |
| 12:30 - 13:00 | Draft recommendations                                                   | All                           |
| **LUNCH 13:00 - 14:00** |                                                                     |                               |
| 14:00 - 14:30 | Systematic review: Light emitting diode (LED) fluorescence microscopy for TB diagnosis | J Minion/M Pai              |
| 14:30 - 15:00 | Laboratory infrastructure and human resource requirements needed for implementation of LED microscopy | C Boehme                     |
| 15:00 - 16:00 | Discussion                                                              | All                           |
| **BREAK 16:00 - 16:15** |                                                                     |                               |
| 16:15 - 16:30 | GRADE summary                                                          | K Steingart                  |
| 16:30 - 17:30 | Final recommendations                                                   | Chair                         |
| 17:30 - 18:00 | Next steps and closing                                                 | Chair                         |
LIST OF PARTICIPANTS

EXPERT GROUP

Dr Maryline Bonnet  
Epicentre, c/o MSFCH  
78 Rue de Lausanne  
116 - CH, 1211 Geneve  
Switzerland  
Tel: 0041 22 849 8940  
e-mail: maryline.bonnet@geneva.msf.org

Dr Saidi Egwaga  
National TB/Leprosy Programme  
Ministry of Health, TB/Leprosy Unit  
PO Box 9083  
Dar Es Salaam  
Tanzania  
Tel: 00255 22 211 8619  
e-mail: tantci@intafrica.com

Dr Bernard Fourie  
Chief Scientific Officer and Director of South African Operations  
Medicine in Need Inc. USA and Medicine in Need South Africa (Pty) Ltd  
PO Box 12660, Queenswood 0121  
Pretoria  
South Africa  
Tel: 0027 12 339 8547  
Fax: 0027 12 86 688 4590  
e-mail: bfourie@medicineinneed.org

Dr Christy Hanson  
Chair of STP Retooling Task Force  
US Agency for International Development (USAID), USAID/BGH/HIDN/ID  
3.7.23, 3rd Floor, Ronald Reagan Bldg  
20523-5900 - Washington, DC  
USA  
Tel: 001 202 712 5429  
Fax: 001 612 554 2379  
e-mail: chanson@usaid.gov

Dr Moses Joloba  
Head of National TB Reference Laboratory  
Department of Medical Microbiology  
Microbiology-Pathology Building  
Uganda  
Tel: 00256 41 541 830 (Office)  
00256 782 752 582 (Mobile)  
Fax: 00256 41 453 3033  
e-mail: moses.joloba@case.edu

Dr Marija Joncevska  
Regional laboratory specialist  
Project HOPE Central Asia  
162 Kunaeva st.  
050010 Almaty  
Kazakhstan  
Tel: 007 327 261 2704 (Office)  
00389 70 222 300 (Mobile)  
e-mail: mjoncevska@projecthope.kz

Prof Paul R. Klatser  
Co-Chair of Subgroup on Optimizing Smear Microscopy, STP New Diagnostics Working Group  
Head of Department  
KIT Biomedical Research  
Royal Tropical Institute  
Meibergdreef 39  
1105 AZ Amsterdam  
The Netherlands  
Tel: 0031 (0)20 566 5440  
e-mail: p.klatser@kit.nl

Dr Madhukar Pai  
Co-Chair of Subgroup on Evidence Synthesis for TB Diagnostics, STP New Diagnostics Working Group  
Assistant Professor  
Department of Epidemiology, Biostatistics & Occupational Health  
McGill University  
1020 Pine Avenue West  
Montreal, H3A 1A2  
Canada  
Tel: 00514 398 5422 (Office)  
00514 952 6604 (Mobile)  
Fax: 00514 398 4503  
e-mail: madhukar.pai@mcgill.ca

Dr John Ridderhof  
Chair of STP Global Laboratory Initiative Working Group  
Associate Director for Laboratory Science  
National Center for Preparedness, Detection and Control of Infectious Diseases, CCID  
Centers for Disease Control and Prevention  
1600 Clifton Rd NE,  
MS-C12  
Atlanta, Georgia 30333  
USA  
Tel: 00404 718 1057  
Fax: 00404 639 3039  
e-mail: jridderhof@cdc.gov
Dr Bertie Squire  
Co-Chair of Subgroup on TB Diagnostics and Poverty, STP New Diagnostics Working Group  
Liverpool School of Tropical Medicine  
Pembroke Place  
Liverpool  
UNITED KINGDOM  
Tel: 0044 151 705 3101  
e-mail: s.b.squire@liverpool.ac.uk

Dr Karen Steingart  
Francis J. Curry National Tuberculosis Center  
University of California, San Francisco  
3180 18th Street, Suite 101  
San Francisco, CA 94110-2028  
USA  
Tel: 001 415 502 4600  
Fax: 001 415 502 4620  
e-mail: karenst@u.washington.edu

Dr Javid Syed  
TB/HIV Project Director  
Treatment Action Group  
611 Broadway, Suite 308  
New York, NY 10012  
USA  
Tel: 001 212 253 7922  
Fax: 001 212 253 7923  
e-mail: javid.syed@treatmentactiongroup.org

Dr Armand van Deun  
Bacteriology Consultant  
International Union Against Tuberculosis and Lung Disease  
Mycobacteriology Unit  
Institute of Tropical Medicine  
Nationalestraat 155  
B-2000 - Antwerpen  
Belgium  
Tel: 00323 2476 548  
Fax: 00323 2476 333  
e-mail: avandeun@iatld.org

Adithya Cattamanchi, MD  
Assistant Professor of Medicine  
San Francisco General Hospital  
Division of Pulmonary and Critical Care Medicine  
Room 5K1  
1001 Potrero Avenue  
San Francisco, California 94110  
Telephone: (415) 206-5489  
Fax: (415) 695-1551  
Email: acattamanchi@medsfgh.ucsf.edu

Dr Jessica Minion  
Medical Microbiology  
MSC Epidemiology  
McGill University  
1020 Pine Avenue West  
Montreal, H3A 1A2  
Canada  
e-mail: jessica.minion@mail.mcgill.ca

FOUNDATION FOR INNOVATIVE NEW DIAGNOSTICS

Dr Catharina Boehme  
Foundation for Innovative New Diagnostics (FIND)  
71 Avenue Louis-Casai  
1216 Geneva  
Switzerland  
Tel: 0041 22 710 0592  
Fax: 0041 22 710 0599  
e-mail: catharina.boehme@finddiagnostics.org

Dr CN Paramasivan  
Foundation for Innovative New Diagnostics (FIND)  
71 Avenue Louis-Casai  
1216 Geneva  
Switzerland  
Tel: 0041 22 710 0592  
Fax: 0041 22 710 0599  
e-mail: CN.paramasivan@finddiagnostics.org

Dr Eric Adam  
Foundation for Innovative New Diagnostics (FIND)  
71 Avenue Louis-Casai  
1216 Geneva  
Switzerland  
Tel: 0041 79 540 1589  
e-mail: eric.adam@finddiagnostics.org

OTHER

Dr Richard Bumgarner  
Independent Consultant  
Health Economics and Finance  
Program and Institutional Evaluations  
Tuberculosis Control Adviser  
1715 Abbey Oak Drive  
Vienna, VA 22182  
USA  
e-mail: richardbumgarner@gmail.com

WHO-STB

Leopold Blanc: blancl@who.int  
Jean Iragena: iragenaj@who.int  
Christian Lienhardt: lienhardt@who.int
WHO-TDR

L Cuevas: cuevasl@who.int
F Moussy: moussyf@who.int
Andrew Ramsay: ramsaya@who.int
Sanne Van Kampen: vankampens@who.int

WHO-OTHER

WHO Guidelines Review Committee Secretariat: grcsecretariat@who