Xpert MTB/RIF Implementation: Results, Impact and Lessons Learned

GLI Meeting May 2014
Geneva

Jacob Creswell
Stop TB Partnership
TB REACH

• Promotes **early** and **increased** TB case detection using **innovative** approaches
 – Especially in poor, underserved & vulnerable
• Supported by Canada (UNITAID for Waves 3 & 4)
• Administered by the Stop TB Partnership
• Grants provided to projects selected on a competitive basis
• Provides programmatic evidence introducing new approaches in different settings
4 Funding Waves 46 Countries
142 Grants and over 90 Million USD Committed

51 Projects currently reporting Xpert testing data
Locations

• Placement
 – Mobile vans
 – Chest camps
 – Private laboratories
 – Health centers
 – District hospitals
Testing Algorithms

- All SS- (some using LED Mx)
- SS- with suggestive CXR
- SS- and HIV+

- All with symptoms
- All HIV+
- All with abnormal/suggestive CXR
- Seriously ill

Xpert General Results

- Data reported to TB REACH through December 31, 2013
- Data from 51 projects
- **295,342 tests performed**
- Programmatic evidence in a variety of settings

RMC Infectious Diseases 2014, 14:2

Results from early programmatic implementation of Xpert MTB/RIF testing in nine countries

Jacob Creswell¹, Andrew J Codlin², Emmanuel Andre³, Mark A Micek⁴, Ahmed Bedru⁶, E Jane Carter⁷, Rajendra-Prasad Yadav⁸, Andrei Mosneaga⁹, Bishwa Rai¹⁰, Sayera Banu¹¹, Miranda Brouwer¹², Lucie Blok¹³, Suvanand Sahu¹ and Lucia Ditiu¹

Towards elimination of tuberculosis
Xpert Test Results

- Detected 38,668 MTB+ individuals
- Overall Crude Positivity 11%
- Effective Positivity (% among individuals tested - not including failed tests) 14.2%
 - Range per quarter (6.4 - 41.0%) - Median 12.5%
- Rif Resistant 4,621 (1.7% of individuals tested)
 - Range per quarter (0-14.2%) - Median 0.9%
- Failure Rate 7.9%
 - Slowly decreasing but widely variable
 - Range per quarter (1.2-28.4%) - Median 6.9%
Cost Per Test

- Not 9.98 USD
- Costs include machine and tests +, +, +
 - Port clearance, infrastructure, warranty, training, maintenance, reporting, transport networks
- How many tests do you do a year per machine?
- How many machines do you have?

<table>
<thead>
<tr>
<th>Country</th>
<th>Retreatment Cases</th>
<th>HIV+ TB Inc (Est)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRC</td>
<td>7,492</td>
<td>16,000</td>
</tr>
<tr>
<td>Ethiopia</td>
<td>4,089</td>
<td>23,000</td>
</tr>
<tr>
<td>Nigeria</td>
<td>7,548</td>
<td>46,000</td>
</tr>
</tbody>
</table>

Running 500 tests a year costs you easily 60 USD per test in year one.

Most machines are not running at full capacity (or even near it).

Transforming the Fight
TOWARDS ELIMINATION OF TUBERCULOSIS
Xpert Impact on Notifications

<table>
<thead>
<tr>
<th>Country</th>
<th>Algorithm</th>
<th>Successful Xpert Tests</th>
<th>MTB+ Yield</th>
<th>New B+ Crude Additional Cases</th>
<th>All Forms TB Crude Additional Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>DR Congo</td>
<td>After SM</td>
<td>6,180</td>
<td>507 (8.2%)</td>
<td>637 (+22.5%)</td>
<td>-401 (-16.1%)</td>
</tr>
<tr>
<td>Malawi</td>
<td>Direct & After SM</td>
<td>5,780</td>
<td>649 (11.2%)</td>
<td>405 (+23.9%)</td>
<td>-467 (-10.3%)</td>
</tr>
<tr>
<td>Mozambique</td>
<td>After FM</td>
<td>6,267</td>
<td>907 (14.5%)</td>
<td>324 (+9.7%)</td>
<td>240 (+3.0%)</td>
</tr>
<tr>
<td>Nepal</td>
<td>After SM & CXR</td>
<td>8,574</td>
<td>1,774 (20.7%)</td>
<td>1,219 (+34.3%)</td>
<td>-174 (-2.1%)</td>
</tr>
</tbody>
</table>

Transforming the Fight

TOWARDS ELIMINATION OF TUBERCULOSIS
Recoding and Reporting

• Uptake of WHO reporting guidelines is improving
• Different systems are found within same provinces - inhibits proper monitoring of impact
• As more machines are placed in service, reporting becomes more challenging
• Automated reporting systems are needed
Automated Tracking, Errors, Cartridges
What Happened?
Cartridges and Calibration

- Biggest problem so far is expired tests
 - Restrictive algorithms, poor planning
 - Customs clearance – and storage
 - Need to share tests – but what tests are you getting?
- Failed tests have a large cost, tracking user stats and error codes is critical, sputum quality
- Calibration compliance has improved but still not 100%
- Vast variations in module failure (5-100%)
 - Depends on infrastructure, location, electric supply?
Conclusions

• Lab interventions alone are unlikely to increase number of people put on TB treatment
• Other strategies are needed to test more people to increase case detection
• Who are we missing? People in or outside of health care system?
• Training – reporting - and good algorithms are critical
Thank You!

http://www.stoptb.org/global/awards/tbreach/xpertmtbrif.asp