Evaluating New TB Drugs in Mice: Relevance to Humans, especially with HIV

Eric Nuermberger, M.D. Center for TB Research Johns Hopkins University School of Medicine Baltimore, MD

February 27, 2011

Disclosures

Active research grants: – Pfizer, sanofi-aventis, Global Alliance for TB Drug Development

What would we like to see from new TB drugs and regimens?

- Improved sterilizing activity to shorten the duration of treatment (active and latent TB)
- Activity against isolates resistant to existing drugs (M/XDR-TB)
- Lower risk of resistance emerging (HIV-TB)
- No interactions with anti-retroviral agents (HIV-TB)

Role of animal models in drug development

Provides critical bridge between *in vitro* studies and human trials

- embodies dynamic interaction b/w host, drug and microbe
- enables testing of a wide range of drug doses and dosing schedules
- enables testing of novel drug combinations and abbreviated treatment durations

"All models are wrong, some are useful."

George Box

Histological comparison of TB in the mouse and guinea pig

Mouse

Guinea pig

Recapitulation of the short-course regimen in the mouse...as in humans

Recapitulation of the short-course regimen in the mouse...as in humans

Pharmacodynamics of INH activity

Pharmacodynamics of rifampin in the mouse model

Jayaram et al, AAC 2003

Dose-ranging activity of rifampin

Early bactericidal activity

RIF dose	n	EBA ₀₋₂		
		(log CFU/ml/day)		
300 mg	3	0.06		
600 mg	8	0.19		
1200 mg	8	0.41		

Jindani et al, ARRD 1980; 121:939

Rosenthal et al, unpublished

Correlation of PA-824 PD parameters with effect

Initial phase

he maximum observed effect was a 0.1 log CFU/day reduction, like the extended EBA observed in humans. Activity correlated best with free drug T_{>MIC}, followed by AUC/MIC and then Cmax/MIC . Free drug T_{>MIC} values associated with a bacteriostatic effect, a 1 log kill and 80% of the maximal observed effect were 22%, 48% and 77, respectively%.

he maximum predicted effect was a 0.11 log CFU/day reduction. Again, activity correlated best with free drug T_{>MIC}, followed by AUC/MIC and then Cmax/MIC . The free drug T_{>MIC} value associated with 90% of the maximal predicted effect was 53%.

Summary Data from PA-824 EBA Studies

First Study

	PA-824 200 mg	PA-824 600 mg	PA-824 1000 mg	PA-824 1200 mg	Rifafour® e-275
Number	12	14	15	11	7
Mean	0.106	0.107	0.091	0.088	(0.148)
Standard Error	0.014	0.014	0.021	0.025	0.021

Second Study

	PA-824	PA-824	PA-824	PA-824	Rifafour ®
	200 mg	150 mg	100 mg	50 mg	e-275
Number	15	15	15	13	8
Mean	(0.111)	0.106	0.099	0.060	(0.141)
Standard	0.019	0.018	0.022	0.019	0.019
Error					

Mouse models of LTBI therapy

- Small mammals (eg, mice & GPs) do not develop
 LTBI after *M.tb* infection
- Mouse models of LTBI have sought:
 - low burden of infection (ideally $< 10^4 \text{ CFU}$)
 - limited or no multiplication
- Methods have included:
 - Low-dose aerosol infection
 - Pre-treatment with antibiotics
 - Infection with replication-deficient strains
 - Immunization prior to *M.tb* challenge

A paucibacillary model for the experimental chemotherapy of LTBI in mice

Zhang et al, Am J Respir Crit Care Med (2009); 180:1151

Sterilizing activity of RH and RZ

	Proportion (%) with positive lung cultures 3 months after treatment for:				
	4 wks	6 wks	8 wks		
RH	15/15 (100%)	n/d	7/15 (47%)		
RZ	8/15 (55%)*	n/d	0/15 (0%)*		

*p<0.01 vs. RH

Zhang et al, Am J Respir Crit Care Med (2009); 180:1151

Sterilizing activity of daily and once-weekly PH regimens

	Proportion (%) relapsing after stopping treatment at:					
Regimen	W2	M1	M2	M3	M4	M6
Н					15/15	15/15
					(100%)	(100%)
R			15/15	13/15	6/13	
			(100%)	(87%)	(46%)	
RH			14/15	7/13		
			(93%)	(54%)		
P ₁₅ H (1/7)			13/15	7/15		
			(87%)	(47%)		
Ρ		10/15	0/15			
		(67%)	(0%)			
P ₁₀ H (5/7)		9/15	0/15			
		(60%)	(0%)			

Sterilizing activity of daily and once-weekly PH regimens

	Proportion (%) relapsing after stopping treatment at:					
Regimen	W2	M1	M2	M3	M4	M6
н					15/15	15/15
					(100%)	(100%)
R			15/15	13/15	6/13	
			(100%)	(87%)	(46%)	
RH			14/15	7/13		
			(93%)	(54%)		
P ₁₅ H (1/7)			13/15	7/15		
			(87%)	(47%)		
Ρ		10/15	0/15			
		(67%)	(0%)			
P ₁₀ H (5/7)		9/15	0/15			
		(60%)	(0%)			
J (5/7)			13/15	2/14	4/14	
			(87%)	(14%)	(29%)	

Conclusions

- This paucibacillary model represents the activity of existing LTBI regimens very well
 RZ > RH = PH_{1/7} > R > H
- 1PH has efficacy similar to 4R, 3RH and 3PH_{1/7}
- 3-4 months of TMC207 also has efficacy similar to 4R, 3RH and 3PH_{1/7}

Acquired rifamycin resistance (ARR) in HIV-TB co-infection

- ARR is thankfully rare among clinical isolates, but is strongly associated with advanced AIDS and intermittent treatment regimens
- ARR occurred with unusually high frequency in clinical trials of AIDS pts receiving:
 - H+RPT (1/7) in the continuation phase,¹ and
 - H+RBT (2/7) after 2 wks of daily treatment²
- This resistance emergence was not foreseen by expts in conventional mouse models

Treatment failure in nude mice treated with 2RHZ/RH for 8 months

Zhang et al, Am J Respir Crit Care Med (2011), in press

Can we recapitulate ARR in nude mice?

- ARR requires 2 things:
 - Sufficient rifamycin pressure to select for spontaneous R-resistant mutants
 - Companion agent exposures insufficient to provide counterselection
- ARR should be recapitulated by:
 - increasing rifamycin exposures to a level sufficient for selection, while
 - decreasing companion drug exposures to a level which no longer provides counterselection

Of mice and men

• Do features specific to necrotic granulomas influence the treatment response?

BALB/c mice

Guinea pigs

C3HeB/FeJ mice

Conclusions

- Mouse models represent the activity of existing TB drugs well; their careful use can (and should!) inform TB drug development
- However, pathological differences between mice and humans have raised concerns about the "predictiveness" of mouse models
- Existing new drugs offer a new "validation set" for comparing mouse and human results

Important considerations for animal models

- Use a well-characterized bacterial strain
- Use a relevant bacterial burden
- Use drug dosages that match human PK/PD
- Select relevant outcomes
 - Bactericidal activity
 - Sterilizing activity
 - Selection / suppression of resistant mutants
 - PK/PD relationships for the above outcomes
- Understand that manipulation of experimental variables may have a profound effect on results

Conclusions

- RHZ (5/7) readily selects H-resistant mutants in immunodeficient nude mice
- Emergence of resistance on RHZ
 - is prevented by
 - substitution of P for R
 - addition of ethambutol during the intensive phase
 - is NOT prevented by
 - true daily (7/7) administration of 2RHZ/RH
- Nude mice may represent a permissive model for resistance emergence, not unlike HIV/AIDS