Optimal timing of antiretroviral therapy during tuberculosis treatment: The SAPiT trial

17th Conference of Retroviruses and Opportunistic Infections
Boston, 28 February 2011

Salim S. Abdool Karim,
Kogieleum Naidoo, Anneke Grobler, Nesri Padayatchi, Cheryl Baxter, Andrew L. Gray, Tanuja Gengiah, Santhanalakshmi Gengiah, Anushka Naidoo, Niraksha Jithoo, Gonasagrie Nair, Wafaa M. El-Sadr, Gerald Friedland and Quarraisha Abdool Karim
The HIV and TB epidemics in South Africa

Red Line = TB case notification rate
Blue Line = Antenatal HIV prevalence

Source: South African Department of Health
Starting ART at 3 Points in TB
The SAPiT Trial: CAPRISA 003

- **Purpose of study:** To determine the optimal time to initiate ART in TB patients
- **Design:** Open-label 3-arm randomized controlled trial
- **Sample size:** 642 HIV-TB co-infected patients
- **Study site:** CAPRISA eThekwini Clinic, Durban
- **Study Population:** Ambulatory TB smear +ve, HIV +ve (CD4 count < 500 cells/mm3) and on standard TB treatment regimens. Participants attended the clinic’s TB-DOTS program.
- **Endpoints**
 - 1^0 All-cause mortality + AIDS defining illness
 - 2^0 Tolerability, Viral Load, TB outcomes & Immune Reconstitution Inflammatory Syndrome (IRIS)
Sept 2008: Sequential arm of the SAPIT Trial stopped

Timing of Initiation of Antiretroviral Drugs during Tuberculosis Therapy

56% lower mortality with integrated TB-HIV treatment
Continued the 2 integrated treatment arms*:
When to start ART during TB treatment?

• Why initiate ART early during TB treatment?
 ▪ To halt HIV progression & avert high TB-HIV mortality

• Why initiate ART later in TB treatment?
 ▪ Decreased risk of immune reconstitution syndrome
 ▪ Lower pill burden / better tolerability – 3 ARVs + (4 vs 2 TB drugs)

• Current treatment based on observational data, clinician judgement & expert opinion:
 ▪ High variability
 ▪ WHO guidelines
 • Pre-2009: CD4<50 initiate early & CD4=50-200 initiate later
 • Since 2009: Start ART in all HIV-infected individuals with active TB, irrespective of CD4 cell count and start TB treatment first, followed by ART ASAP after starting TB treatment.

*based on the trial’s Safety Monitoring Committee recommendation
Study intervention
(After Sept 2008, remaining 2 arms continued to end)

- Randomized to one of 2 arms (continued to trial end):
 - **Early integrated-therapy arm** - antiretroviral therapy to be initiated within 4 weeks of starting tuberculosis treatment,
 - **Late integrated-therapy arm** - antiretroviral therapy to be initiated within 4 weeks of completing the intensive phase of tuberculosis treatment, and

- **Cotrimoxazole prophylaxis**: provided to all patients

- **ART**: ddI + 3TC + efavirenz – once daily regimen

- **Once-a-day treatment** integrated with TB-DOT
Enrollment and Outcomes

1331 Screened

642 Enrolled

213 in Sequential Arm*

214 in Early integrated arm

198 (92.5%) started ART at median of 8 days (IQR: 7 to 22)

15 died (7%) 26 lost to follow-up (12%) 20 withdrew during follow-up (9%) 153 completed follow-up (72%)

215 in Late integrated arm

164 (76.3%) started ART at median of 95 days (IQR: 67 to 171)

15 died (7%) 34 lost to follow-up (16%) 23 withdrew during follow-up (11%) 143 completed follow-up (67%)

Retention: 76% at 18 months

*Safety Monitoring Committee review and recommended:
- Start ART immediately in all sequential arm patients but continue the two integrated treatment arms in the trial
Results: Baseline Characteristics

<table>
<thead>
<tr>
<th>Baseline characteristic</th>
<th>Early integrated arm (N = 214)</th>
<th>Late integrated arm (N = 215)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age in years (SD)</td>
<td>34.3 ± 8.0</td>
<td>34.5 ± 8.7</td>
</tr>
<tr>
<td>Gender - (% male)</td>
<td>45.3</td>
<td>52.1</td>
</tr>
<tr>
<td>Median CD4+ count, cells/mm3 (IQR)</td>
<td>154.5 (75 to 261)</td>
<td>149 (77 to 244)</td>
</tr>
<tr>
<td>log viral load copies/ml (IQR)</td>
<td>5.1 (4.5 to 5.6)</td>
<td>5.2 (4.5 to 5.6)</td>
</tr>
</tbody>
</table>
Overall: AIDS defining illness or death

<table>
<thead>
<tr>
<th></th>
<th>Early Integrated arm n = 214</th>
<th>Late Integrated arm n = 215</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of events</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td>Person-years</td>
<td>259.4</td>
<td>244.2</td>
</tr>
<tr>
<td>Event rate (per 100 person-years)</td>
<td>6.9</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Incidence Rate Ratio: \(0.89\) (95% CI: 0.44 to 1.79); \(p=0.73\)

Similar rates of AIDS defining illness or death
Kaplan-Meier curve for AIDS or death in patients with CD4 <50 cells/mm³

IRR: 0.32 (0.07-1.13), p=0.06

68% reduction of AIDS / death (p=0.06)
Kaplan-Meier curve for AIDS or death in patients with CD4 ≥50 cells/mm³

Early integrated therapy

Late integrated therapy

IRR: 1.51 (0.61–3.95), p=0.34

No discernable differences in AIDS / death
HIV treatment outcomes

HIV suppression >90% after 18 months
No difference between arms irrespective of CD4 status
Successful TB treatment completion

TB treatment successfully completed in ~80% of the patients with no significant differences across groups.
AIDS / death, IRIS rates, and drug switches stratified by CD4+ count

<table>
<thead>
<tr>
<th></th>
<th>Early Integrated Therapy</th>
<th>Late Integrated Therapy</th>
<th>IRR (95% CI)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4 <50 cells/mm³</td>
<td>n=37</td>
<td>n=35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIDS / death*</td>
<td>8.5</td>
<td>26.3</td>
<td>0.32 (0.1-1.1)</td>
<td>0.06</td>
</tr>
<tr>
<td>IRIS*</td>
<td>46.8</td>
<td>9.9</td>
<td>4.7 (1.5-19.6)</td>
<td>0.01</td>
</tr>
<tr>
<td># drug switches</td>
<td>3</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD4 ≥50 cells/mm³</td>
<td>n=177</td>
<td>n=180</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIDS / death*</td>
<td>6.6</td>
<td>4.4</td>
<td>1.51 (0.6-4.0)</td>
<td>0.34</td>
</tr>
<tr>
<td>IRIS*</td>
<td>15.8</td>
<td>7.2</td>
<td>2.2 (1.1-4.5)</td>
<td>0.02</td>
</tr>
<tr>
<td># drug switches</td>
<td>7</td>
<td>1</td>
<td>6.8 (0.8-55)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

* Rates calculated as events per 100 person-years
Balance of risks and benefits

For CD4 count <50 cells/mm³

Early integrated therapy has:
- 68% lower AIDS /death rate overshadows
- 5-fold higher risk of IRIS
- Increasing trend in drug switches

For CD4 ≥50 cells/mm³

Early integrated therapy has:
- No discernable benefit in AIDS /death rate
- 2-fold higher risk of IRIS
- ↑ drug switches
Conclusions

• Findings support integration of TB and HIV treatment

• Recommend:
 - *Patients with CD4+ counts* < 50 cells/mm³:
 • Early ART initiation as soon as possible after TB treatment initiation
 - *Patients with CD4 counts* ≥ 50 cells/mm³:
 • ART initiation can be deferred to start of the continuation phase of TB treatment
 • Decision on early or late initiation: use clinical judgement of capacity to manage IRIS & toxicities
Acknowledgements

- The patients in the study
- President’s Emergency Plan for AIDS Relief (PEPfAR)
- Global Fund & Enhancing Care Initiative
- eThekwini Metro & staff of Prince Cyril Zulu clinic
- CAPRISA SAPiT Team & Community Support Group
- The SAPiT Safety Monitoring Committee
- KwaZulu-Natal Provincial Department of Health
- KwaZulu-Natal, Yale & Columbia Universities
- CAPRISA was established by the Comprehensive International Program of Research on AIDS of the US National Institutes of Health (grant# AI51794)