Evolution of New TB Diagnostics for Detection and Resistance

Susan E. Dorman, MD
Johns Hopkins University
CROI, Boston
2 March 2011
The target TB case detection rate of 70% has not been reached.

WHO, Global Tuberculosis Control 2009
Commonly used TB diagnostic modalities
Overview

• New technologies
 – Xpert MTB/RIF
 – Urine lipoarabinomannan tests
 – Other TB diagnostics on the horizon

• Beyond “accuracy”
Xpert MTB/RIF

- For detection of *M. tuberculosis* and common mutations that confer resistance to rifampin (from respiratory specimens)
- Molecular test: hemi-nested real-time PCR of MTB-specific region of *rpoB* gene, which is then probed with molecular beacons for mutations
- Fully automated; uses GeneXpert platform (Cepheid, Sunnyvale, CA)
- Integrated sample processing and PCR; disposable plastic cartridge contains all reagents
- 2 manual steps: addition of bactericidal buffer to sputum then transfer of defined volume to cartridge
Assay Procedure for the MTB/RIF Test

1. Sputum liquefaction and inactivation with 2:1 sample reagent

2. Transfer of 2 ml material into test cartridge

3. Cartridge inserted into MTB-RIF test platform (end of hands-on work)

4. Sample automatically filtered and washed

5. Ultrasonic lysis of filter-captured organisms to release DNA

6. DNA molecules mixed with dry PCR reagents

7. Seminested real-time amplification and detection in integrated reaction tube

8. Printable test result

Time to result, 1 hour 45 minutes

MTB DETECTED LOW; RIF Resistance NOT DETECTED
Xpert MTB/RIF

• High **analytical specificity** for *M. tuberculosis* conferred through careful selection of amplification target

• **Analytical sensitivity**: LOD 131 cfu/ml (D Helb et al JCM 2010;48:229)
 – Smear microscopy LOD ≈ 10,000 cfu/ml
Evaluation Study of Xpert MTB/RIF
C. Boehme et al. NEJM 2010;363:1005

• Cross-sectional study of diagnostic test accuracy in intended target population using best available reference standard (FIND)

• Population and Procedures
 – Peru, Azerbaijan, South Africa x 2, India
 – Adults with pulmonary TB symptoms
 – 3 sputa obtained (2 spot, 1 morning)

• Lab Methods for each participant
 – 2 of 3 sputa: decontamination then ZN smear microscopy, solid & liquid culture, Xpert MTB/RIF
 – 1 of 3 sputa: direct ZN smear microscopy, Xpert MTB/RIF (no decontamination)
Evaluation Study of Xpert MTB/RIF
C. Boehme et al. NEJM 2010;363:1005

• Results
 – 1730 eligible participants
 • 976 with HIV status known; 40.2% HIV-positive

 – Final diagnostic category
 • Smear positive, culture positive TB: 32.8%
 • Smear negative, culture positive TB: 10.1%
 • Rifampin-resistant TB: 12.2%
Evaluation Study of Xpert MTB/RIF

C. Boehme et al. NEJM 2010;363:1005

<table>
<thead>
<tr>
<th># Xpert tests per participant</th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All CX POS</td>
<td>SM POS, CX POS</td>
</tr>
<tr>
<td>1 sputum</td>
<td>675/732 92.2%</td>
<td>551/561 98.2%</td>
</tr>
<tr>
<td>3 sputa</td>
<td>723/741 97.6%</td>
<td>566/567 99.8%</td>
</tr>
</tbody>
</table>

HIV POS: 93.9%, HIV NEG: 98.4%
Evaluation Study of Xpert MTB/RIF

C. Boehme et al. NEJM 2010;363:1005

<table>
<thead>
<tr>
<th></th>
<th>Xpert SENSITIVITY for Rifampin Resistance</th>
<th>Xpert SPECIFICITY for Rifampin Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># correct/# total</td>
<td># correct/# total</td>
</tr>
<tr>
<td></td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Phenotypic DST</td>
<td>200/205</td>
<td>505/515</td>
</tr>
<tr>
<td></td>
<td>97.6%</td>
<td>98.1%</td>
</tr>
<tr>
<td>Phenotypic DST and Discrepant Resolution by Sequencing</td>
<td>209/211</td>
<td>506/506</td>
</tr>
<tr>
<td></td>
<td>99.1%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Xpert MTB/RIF

• Attributes & Advantages
 – Simple to perform, minimal training required
 – Not prone to cross-contamination
 – Requires minimal biosafety facilities (Banada JCM 2010)
 – “Near-care” (? POC)

• Shortcomings & Disadvantages
 – Complex instrument (calibration, electrical supply)
 – Platform well-suited to detecting limited # of mutations
 – Cost for instrument and cartridges
Xpert MTB/RIF

• WHO evidence review to policy announcement, Sept to Dec 2010

• WHO expert group recommendations:
 – “Xpert should be used as the initial diagnostic test in individuals suspected of having MDR-TB or HIV-associated TB” (strong recommendation)

 – “Xpert may be used as a follow-on test to microscopy where MDR and/or HIV is of lesser concern, especially in smear-negative specimens” (conditional recommendation, recognizing resource implications)

 Courtesy of Dr. K. Weyer
Urine Assays for Mycobacterial Lipoarabinomannan (LAM)

• Background
 – LAM
 • 17.5 kd lipopolysaccharide component of MTB cell wall; heat stable
 • Released from metabolically active or degraded MTB
 • Prelim data animal models & some humans: in urine

 – Urine-based test
 • Urine easy to obtain
 • Lacks infection control issues of blood, sputum
 • Inverness: ELISA format; lateral flow under development
Sensitivity of Inverness LAM ELISA, by CD4 Count in HIV/TB Patients

- Lawn et al
 AIDS 2009;23:1875
- Shah et al
 JCM 2010;48:2972
- Gounder et al
 CROI 2011
Beyond the current LAM ELISA...

• Lateral flow format
 – Dheda et al, 301 HIV+ hospitalized adults
 – Sensitivity LF 71% (61, 79) vs ELISA 61% (52, 70)
 – LF sensitivity if CD4<100: 86% (77, 93)

• This test performs best in those patients (advanced HIV) in whom conventional TB tests perform least well
• Expanding interest in the biology of mycobacterial products in clinical specimens
• Bringing new detection platforms, experts into TB field
• Prompting discussion of/strategies for integrating non-sputum tests into TB dx algorithms
Other TB Diagnostic Tests

• Smear microscopy improvements: LED; concentration of bacilli; automated reading

• Culture improvements: Novel detection systems; novel media

• Nucleic acid amplification for MTB detection: Isothermal “near care”

• Molecular for DST: Expanded mutation capacity

• Serology: Proteomic approaches

• Detection of volatiles: Giant pouched rats; electronic noses
Beyond “accuracy” as measured in the lab...
Accuracy in the lab is only one step of a complex process.

- **Pre-analytical**
 - Identifying “TB suspects”
 - Obtaining the specimen
 - Labeling the specimen
 - Handling the specimen
 - Transporting the specimen
 - Tracking the specimen

- **Analytical**
 - Logging in the specimen
 - Processing the specimen
 - Performing “the test”
 - Transmitting the results
 - Quality assurance

- **Post-Analytical**
 - Receiving the test result
 - Conveying the test result
 - Interpreting the result
 - Using result to treat the pt
“near care” or “POC” tests will simplify the process BUT...

Pre-analytical Analytical Post-Analytical

Identifying “TB suspects” Obtaining the specimen

Performing “the test” Quality assurance

Interpreting the result Using result to treat the pt

Still many steps.... opportunities & needs for operational research around diagnostic and clinical care processes
Impact: on Whom, What?

The Patient

- Time to tx?
- Morbidity?
- Survival?

The TB/HIV Program(s)

- The Health System

- # patients reached?
- Costs ($ and opportunity)?

The Community

- TB rates?
- Rates of drug resistant TB?
Infection Control
(e.g. in healthcare settings)

• TB case-finding is essential for infection control

• How can sensitive POC/near-care diagnostics open up new approaches to infection control esp. in healthcare settings?
“Deliverability”

• Can the test be rolled out to the places that matter?
• Will there be uptake?
• What is needed to sustain uptake?
• How to ensure that capacity for successful TB treatment keeps pace with case detection?

Important work already underway: Global Laboratory Initiative, TB REACH, PEPFAR, others
From accuracy to access: a role for advocacy and activism

- HIV/AIDS
 - Pre-2000: high ARV prices and patents limited access in developing countries
 - Post-2000: expansion started (e.g. WHO “3 by 5”)
 - Special terms in international trade laws allow manufacture of generic drugs
 - Some countries allow purchase of generic drugs from abroad
 - Brazil: legislation for free access to tx
 - Common theme: role of civil society

- Parallels between HIV treatment access and TB diagnostic access
“HIV TESTING IS THE ANSWER — WHAT’S THE QUESTION?”
Acknowledgements

• NIH – TB Clinical Diagnostics Research Consortium

• Johns Hopkins University Center for TB Research