HIV and Drug-Resistant TB

What do we know?
What do we need to know and do?

Neel R. Gandhi, MD
Tugela Ferry Care & Research Collaboration (TF CARES)
Albert Einstein College of Medicine

July 19, 2009
HIV & Drug-Resistant TB Epidemic

- Rise of Drug-resistant TB cases in Africa confirms convergence of HIV & drug-resistant TB epidemics
- MDR TB caseload in Botswana has risen consecutively over past decade
- Explosive MDR and XDR TB epidemics seen in South Africa over past 5 years
 - MDR TB prevalence now exceeds 25 cases per 100,000 population in certain areas
Convergence of HIV & MDR/XDR TB

• Why is the convergence of these epidemics concerning?
 – Usual public health implications: drug-resistant TB is more costly, complex & difficult to treat
 – Two factors especially worse with HIV co-infection:
 • Worse outcomes: dramatically greater mortality
 • Potential for explosive spread due to primary transmission
Rise of MDR TB in 1990s

- Numerous outbreaks in congregate settings
- Primarily among HIV co-infected patients
- Characterized by high and rapid mortality

<table>
<thead>
<tr>
<th>Location</th>
<th>HIV co-infection</th>
<th>Mortality</th>
<th>Survival (median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Florida</td>
<td>93%</td>
<td>72%</td>
<td>7 weeks</td>
</tr>
<tr>
<td>New York</td>
<td>95%</td>
<td>77%</td>
<td>4 weeks</td>
</tr>
<tr>
<td>Argentina</td>
<td>98%</td>
<td>79%</td>
<td>4 weeks</td>
</tr>
<tr>
<td>New York</td>
<td>91%</td>
<td>83%</td>
<td>4 weeks</td>
</tr>
<tr>
<td>New York</td>
<td>100%</td>
<td>89%</td>
<td>16 weeks</td>
</tr>
<tr>
<td>Italy</td>
<td>98%</td>
<td>95%</td>
<td>6-8 weeks</td>
</tr>
<tr>
<td>Spain</td>
<td>100%</td>
<td>98%</td>
<td>7 weeks</td>
</tr>
</tbody>
</table>

Wells C et al. CID 2007;196:S86-107
Mortality in HIV-Associated XDR TB

Gandhi NR et al. Lancet 2006
HIV-Associated MDR & XDR TB in S Africa

MDR TB (n = 272)

XDR TB (n = 382)

29 days

60 days

Survival in days
Mortality in HIV & MDR/XDR TB

• Successful treatment outcomes possible in low and middle income countries in absence of HIV

• With HIV co-infection, however, drug-resistant TB takes on a different and more aggressive course
 – Nearly two decades of experience demonstrating rapid and high mortality
 – Majority die within 6-8 weeks, before diagnosis can be made by conventional culture and DST

• Thus, majority die before treatment with second-line TB drugs can be initiated
Predictors of Mortality: HIV & MDR/XDR TB

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Adjusted Hazard Ratio</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD4 Count: <50 cells/mm³</td>
<td>5.1</td>
<td>0.002</td>
</tr>
<tr>
<td>51-200 cells/mm³</td>
<td>4.0</td>
<td>0.006</td>
</tr>
<tr>
<td>>200 cells/mm³</td>
<td>ref</td>
<td>ref</td>
</tr>
<tr>
<td>ARVs before MDR/XDR TB diagnosis</td>
<td>0.4</td>
<td>0.027</td>
</tr>
<tr>
<td>Extrapulmonary TB</td>
<td>1.5</td>
<td>0.27</td>
</tr>
<tr>
<td>Admission within last year</td>
<td>1.4</td>
<td>0.30</td>
</tr>
<tr>
<td>Smear Positive</td>
<td>2.1</td>
<td>0.04</td>
</tr>
</tbody>
</table>
How do HIV-infected patients develop MDR/XDR TB?
Acquired resistance: Patient develops resistance due to incomplete or inappropriate treatment
Primary Resistance

Acquired resistance:
Patient develops resistance to drugs due to incomplete or inappropriate treatment

Primary Resistance:
Patient develops resistance due to transmission of drug-resistant strain
MDR/XDR TB among New TB Cases

Wells C et al. CID 2007;196:S86-107
Four TB Strains in Single Patient

Susceptible TB \rightarrow MDR TB \rightarrow XDR TB

Andrews J. et al. JID 2008
Genotypes of Patients with XDR TB Relapse

Andrews J. et al. JID 2008
Transmission of MDR & XDR TB
MDR TB cases in KwaZulu-Natal

SSS Buthelezi. XDR TB Task Force 2008
XDR TB cases in KwaZulu-Natal

![Graph showing XDR TB cases in KwaZulu-Natal from 2001 to 2007 for IALCH and KGV.]
Why is Primary Transmission Occurring?

• Long delays in diagnosis of drug-resistant TB
 – Average time to diagnosis is 6-12 weeks by conventional TB culture and susceptibility testing

• Inadequate treatment options
 – Patients with MDR and XDR TB remain infectious longer

• Lack of Infection control facilities
 – Congregate wards without any isolation possible
What do we need to do?
Comprehensive Response

• Prevention
 – Strengthen TB DOTS program to curb creation of drug resistance
 – Create & Implement comprehensive infection control program to prevent transmission of drug-resistance

• Diagnosis
 – Develop and implement rapid diagnostic assays to reduce time to diagnosis from 6-8 weeks to 1-3 days
 – Use intensified case finding to find patients at earlier stages of disease
Comprehensive Response cont’d

• Treatment
 – Decentralize to reduce referral delay, increase capacity and improve treatment completion rates
 – Use SLDs empirically in HIV-infected patients suspected of MDR or XDR TB
 – Integrate antiretroviral therapy into MDR/XDR TB treatment programs to facilitate early and widespread use
What are the gaps in knowledge?
Research Priorities: Early Mortality

• **Develop and test rapid drug-resistance assays**
 – Must perform well in pauci-bacillary TB and HIV
 – Must be useful in peripheral healthcare settings
 • Ideally, point of care
 – Must provide initial results in 1-2 days

• **Examine the effectiveness and safety of integrated antiretroviral and SLD TB therapy**
 – Impact on mortality
 – Timing of ARV initiation
 – Drug-drug interactions
 – Overlapping toxicities
 – Incidence of IRIS in MDR or XDR TB
Research Priorities: Transmission

• Transmission studies
 – Identify locations of transmission
 • Healthcare settings: both inpatient & outpatient
 • Community transmission
 – Test interventions to interrupt transmission in both healthcare and community settings
• Treatment of contacts exposed to MDR or XDR TB to prevent progression to active disease
Research Priorities: Epidemiology

• Systematic TB drug-resistance surveys in high HIV prevalence settings
 – Actual burden of disease still unknown due to lack of lab capacity
Summary

• Convergence of HIV and Drug-Resistant TB epidemics has highlighted inadequacies in TB control
 – Mortality rates with MDR & XDR TB significantly higher and more rapid than in absence of HIV
 – Emphasize need for better, more rapid diagnostics
 – Use of empiric second-line TB treatment and integration of antiretroviral therapy necessary

• Large pool of vulnerable HIV-infected patients leads to rapid propagation of MDR & XDR TB strains
 – Further studies of transmission dynamics and interruption needed
Implications

• Rise of HIV epidemic in Eastern Europe and MDR/XDR TB epidemics in Africa suggest that we are just at the beginning of this catastrophic convergence

• Significant efforts are needed to understand the implications of these dual diseases and to develop the tools to address them effectively
Acknowledgements

• **Funding:** Doris Duke Charitable Foundation, PEPFAR, Howard Hughes Medical Institute, Irene Diamond Fund

• **Tugela Ferry:** TB DOTS & HIV Staff, Home Based Care Program

• **Nelson R. Mandela School of Medicine:** Leora Sewnarian

• **Inkosi Albert Luthuli Hospital Microbiology Lab**

• **KZN Department of Health:** Bruce Margot

• **Italian Cooperation:** Venanzio Vella & Claudio Marra

• **Patients and families** who participated in these studies