

Chest X-ray Taking Procedures Training for X-ray Technicians/ Radiographer

"Radiation Protection"

Ms. KHIN YADANAR MOE

Consultant (TB CXR Training), IDDS Project/ Myanmar

Content

ALARA (As Low As Reasonably Achievable) Principle

Radiation Protection for Pregnancy

Radiation Protection for Pregnant Technologist

Radiation protection for the Public

Personal Monitoring Devices

Radiation Protection

Patients should be protected from unnecessary radiation for all diagnostic radiographic examinations, especially for CXRs because these are the most common radiographic examinations

Aims:

- -to prevent deterministic effect
- -to limit the probability of the certain level

ALARA Principle

ALARA (As Low As Reasonably Achievable) Principle

"All technologists should practice the ALARA principle so that patients and other health care professionals do not receive unnecessary radiation."

Four important ways that ALARA can be achieved:

Radiation Protection for Pregnancy

Radiation Protection for Pregnancy

Apply 10-day rule for a female of reproductive age for high dose phenomenon

"ICRP" states that 10-day rule as: "whenever possible, one should confine the radiological examination of the lower abdomen and pelvis in the **TEN-day** interval following the onset of menstruation"

10-day rule suggests that:

- Non-urgent x-ray during the first TEN days of Menstrual cycle
- During this period, x-ray of lower abdomen and pelvis could harm developing follicles and fertilized

Reference: 10e RADIOLOGIC SCIENCE FOR TECHNOLOGISTS: PHYS, BIOL PROTECTION By Bushong ScD FACR FACMP, Stewart.

ovum

Radiation Protection for Pregnancy – Cont.

Pregnant Dose

Shielding of the abdomen and pelvis with a lead apron

Limiting the number of views

The fetus is in the direct beam (fetal dose >10 mGy (1 rad), the radiologist and referring physician should discuss other options

Radiation Protection for Pregnancy – Cont.

Examination	Typical fetal dose (mGy)	Risk of childhood cancer per examination
Chest	0.001 – 0.1	<1 in 1,000,000

Radiation Protection for Pregnant Technologists

Radiation Protection for Pregnant Technologists:

• When an employee first discovers she is pregnant, it is desirable to conduct, on an individual basis, a review of her exposure history and work assignments

 not receive more than 5 mSv (500 mrem) during the period of gestation

Radiation Protection for the Public

Radiation Protection for the Public

Can be controlled by

Can be reduced by

3 cardinal principles (time, distance and shielding

ALARA principle should be applied

Conventional gypsum board, glass or lead acrylic

Wearing radiation monitoring devices (photographic emulsion, film badge, gas-filled radiation detector, scintillation detector, TLD and OSLD)

Design for Radiation Protection

Design for Radiation Protection

- Protective x-ray tube housing:
 - Reduces leakage radiation(less than I mGy/hr at distance I m)
 - Doesn't contribute significantly to staff dose

Collimation

Design for Radiation Protection – Cont.

- A total filtration at least 2.5 mm AL above 70 kvp
 - 1.5 mm AL between 50 and 70 kvp
 - 0,5 mm AL below 50 kvp
- For mobile x-ray system
 - Protective lead apron should be used
 - The operator is far, at least 2m from the x-ray tube during the exposure

In diagnostic radiology (excluding mammography) is 2.5 mm aluminium for equipment operating at 70 kV or higher

Patient Protection

Patient Protection

- I. Minimum repeat radiographs
- 2. Correct filtration
- 3. Accurate collimation
- 4. Specific area shielding (gonadal and female breast shielding)
- 5. Select projections and technique factors appropriate for the examination

- I. Minimum repeat radiographs
 - Good communication between the technologist and the patient
 - Simple and understandable breathing instructions
 - Carefulness in positioning and selection of correct technique factors

2. Correct filtration

 inherent or built-in filtration (0.5 mm aluminium equivalent)
 added filtration, metal filter (aluminium or copper or combination of these)

- Filtration of the primary x-ray beam reduces exposure to the patient by preferentially absorbing low-energy "unusable" x-rays, which mainly expose the patient's skin and superficial tissue without contributing to image formation
- There are 2 types of filtration

- 3. Accurate collimation
 - Reduces patient exposure by limiting the size and shape of the x-ray field to the area of clinical interest
 - Collimation Rule:
 - Collimation limit the x-ray field to only the area of interest, and collimation borders should be visible on the IR on all four sides

Close four-sided collimation (The collimated light field may appear too small because of divergence of x-rays)

4. Specific area shielding (gonadal and female breast shielding)

- <u>Male Gonadal shielding:</u>
 - Should be placed distally to the symphysis pubis, covering the area of the teste and scrotum.
 - The upper margin of the shield should be at the symphysis pubis.

- Female Gonadal shielding:
 - Should be placed to cover the area of the ovaries, uterine tubes, and uterus.
 - The lower border of the shield should be at or slightly above the symphysis pubis.
 - The upper border extending just above the level of the anterior superior iliac spines (ASIS).

- A. AP pelvis with flat contact shield (1 mm lead equivalent)
- **B.** Male gonadal shield shapes

- A. AP right hip with flat contact shield (1 mm lead equivalent)
- **B.** Female ovarian shield shapes

5. Select projections and technique factors appropriate for the examination

- Use high kV and low mAs techniques
- Use PA rather than AP projections to reduce dose to anterior upper thoracic region (thyroid and female breasts)

Personal Monitoring Devices

Personal Monitoring Devices

Many instruments are used for individual monitoring of radiation exposure:

Aims:

- Monitor and control the individual dose
- Report and investigate over-exposure and recommend necessary remedial measures, if needed
- Maintain life-time cumulative dose record

A	A personal monitoring device	Advantages:	Disadvantages:
doses from x-	Measures individual loses from x-ray, beta	- Permanent record, cheap	- Complex darkroom procedure
	particle and thermal neutrons Consists of a film pack loaded in film holder	- Can distinguish between different energies of photons	 Limited self life (one month) Cannot be reused (film)
H	aving suitable metallic filters Oose is measured in Sv	- Can measure doses from different types of radiation	- Sensitive to temperature, humidity, chemicals and lights

Reference: The Textbook of Radiographic Positioning & Related Anatomy, 8th Edition (ISBN 978-0-323-08388-1). Authors Kenneth L. Bontrager and John P. Lampignano.

Film Badge

TLD (Thermo-Luminescence Dosimeter)

- Is a personal monitoring device
- Based on the principle of thermoluminescence
- Is used to measure individual dose from x-ray, beta and gamma ray

"The emission of Light by certain material when they are heated after radiation exposure"

Types of TLD I) Chest batch - whole body 2) Wrist batch - extremity 3) Finger batch - finger

Advantages of TLD

Can be made very small for finger/eye doses

Can be reused (one TLD can be used 100 times, one card can be used for 300 months (25 years)

Can be worn up to 3 months at most

Disadvantages of TLD

Expensive but cost effective for reuse

Cannot distinguish between different types of radiation

Once read out, record is lost i.e., can't provide permanent record

Optically stimulated luminescence Dosimeter (OSLD)

• To provide X, gamma, beta and neutron radiation monitoring using OSL technology that is a method that has established itself in the whole-body dosimetry:

No	Advantages	Disadvantages
1	High sensitivity	Sensitivity to light
2	High precession	
3	Readout flexibility	
4	Convenience	

Pocket Dosimeter

- Provides the wearer with an immediate reading of exposure
- Contains a small ionization chamber

No	Advantages	Disadvantages
1	Immediate reading	Limited range
2	Reusable	No permanent record
3	Readout flexibility	Sensitive to mechanical problems
4	Convenience	

Direct-reading Pocket Dosimeter

Reference: Author- Prolineserver Access for free at https://commons.wikimedia.org/wiki/File:Direct-reading_dosimeter.jpg

August 2021

Pocket Dosimeter

Reference: Author- Dozymetr Access for free at https://commons.wikimedia.org/wiki/File:Pocket_dosimeter_RKGB-01_Gorin.jpg

Electronic Dosimeters:

- Uses silicone diode detector
- Can provide a direct electronic readout and live/real time readouts
- Don't need the processing
- Require yearly battery replacement and checking.

No	Advantages	Disadvantages
1	Very sensitive	High initial cost
2	Good for measuring pregnancy doses	

THANKYOU!