Annual Meeting of the WHO Child & Adolescent TB Working Group

Engagement, Screening, Contact Investigation & Prevention in a High-transmission MDR-TB Setting Experiences from Papua New Guinea

Suman Majumdar

29 November, 2022

Acknowledgements & Funding

No conflicts of interest to declare

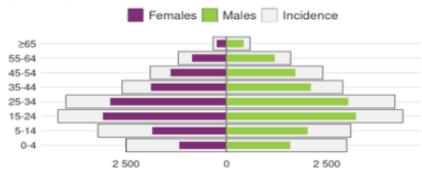
The Reducing the Impact of Drug-resistant TB (RID-TB) project was supported by the Australian Government and implemented by the Burnet Institute.

The Stronger Systems for Drug-resistant Tuberculosis and Malaria **(STRATUM)** research grant was supported by the Australian Government and implemented by the Menzies School of Health Research and the Burnet Institute.

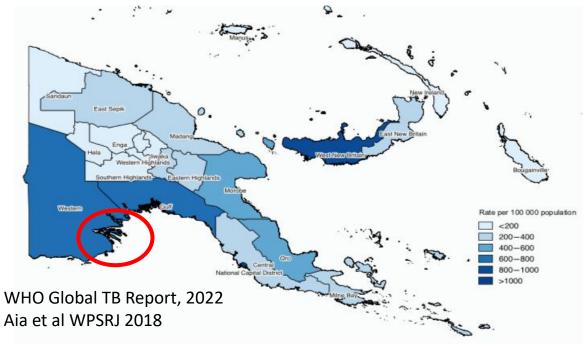
The Comprehensive Community-based solutions to reduce MDR-TB in high transmission settings (CURB MDR-TB) is supported by the MRFF (grant number 1201008)

I am a recipient of an NHMRC Postgraduate Scholarship (grant number 1191614) and the RACP NHMRC Woolcock Scholarship

TB in Papua New Guinea (2021)

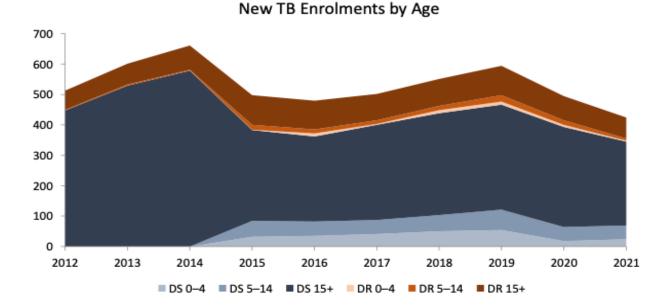

- Incidence 424 (340 517) per 100,000
- Treatment coverage 68% (56 85)
- TB notifications & outcomes

Pulmonary	53%
Bac+	36%
Child	23%
Success rate	74%
Case fatality	13% (8 – 19)


MDR-TB 481 cases				
New	4% (1.6 - 8.4)			
ReTx	23% (27 -42)			
Success rate	70%			

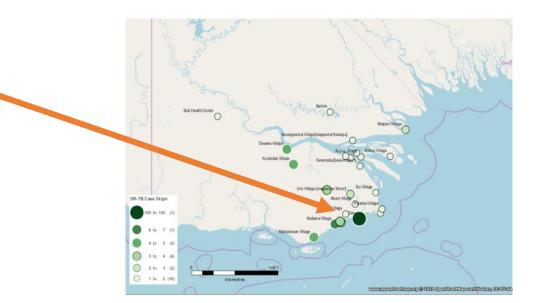
Incidence, Notified cases by age group and sex, 2021

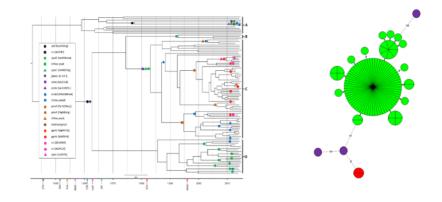
(Number)



TB case notification by province, PNG, 2016

Unprecedented rates of MDR-TB in Daru, South Fly District, Western Province, PNG


- TB case notification rate of 2,600 per 100,000 population
- 70% of all TB notifications are in Daru residents
- 68% of TB notifications are <35 years
- MDR-TB case notification rate of 600 per 100,000
- One in five TB cases are MDR/RR TB



PNG SUPPLEMENT

The emergency response to multidrug-resistant tuberculosis in Daru, Western Province, Papua New Guinea, 2014–2017

L. Morris, 1 S. Hiasihri, 2 G. Chan, 2 A. Honjepari, 1 O. Tugo, 3 M. Taune, 3 P. Aia, 4 P. Dakulala, 4 S. S. Majumdar²

Multi-clonal evolution of multi-drug-resistant/extensively drugresistant *Mycobacterium tuberculosis* in a high-prevalence setting of Papua New Guinea for over three decades

Arnold Bainomugisa,^{1,2} Evelyn Lavu,³ Stenard Hiashiri,⁴ Suman Majumdar,⁵ Alice Honjepari,⁴ Rendi Moke,⁶ Paison Dakulala,⁶ Grant A. Hill-Cawthorne,⁷ Sushil Pandey,⁸ Ben J. Marais,⁷ Chris Coulter⁸ and Lachlan Coin^{2,*}

Public Health Action

VOL 9 SUPPLEMENT 1 PUBLISHED 21 SEPTEMBER 2019

Supplement: Foundations for Pillar 3 of the End TB Strategy in Papua New Guinea building capacity in operational research

International Union Against Tuberculosis and Lung Disease

Health solutions for the poor

PAPUA NEW GUINEA INSTITUTE OF MEDICAL RESEARCH

Australian

Public Health Action

INTRODUCTION

The SORT IT model for building operational 4-5 providers in PNG

EDITORIAL 6

New Guinea and the Pacific Islands K. Viney, K. Bissell, P. C. Hill

- resistant tuberculosis in Daru, Western Province, Papua New Guinea, 2014-2017 M. Taune, P. Aia, P. Dakulala, S. S. Majumdar
- Drug-resistant tuberculosis diagnosis since 15-21 Xpert® MTB/RIF introduction in Papua New Guinea, 2012-2017 C. Coulter, P. Aia, S. S. Majumdar, B. J.Marais, S. M. Graham, J. Vince
- 22-28 Impact of GxAlert on the management of rifampicin-resistant tuberculosis patients. Port Moresby, Papua New Guinea J. K. Banamu, E. Lavu, K. Johnson, R. Moke, S. S.
- 29-35 Implementation of screening and management of household contacts of A. Honjepari, S. Madiowi, S. Madjus, C. Burkot, S. Islam, G. Chan, S. S. Majumdar, S. M. Graham
- 36-41 with the new dispersible fixed-dose combinations in Port Moresby V. Apis, M. Landi, S. M. Graham, T. Islam, J. Amini, G. Sabumi, A. M. Mandalakas, T. Meae, P. du Cros, H. D. Shewade, H. Welch
- 42-46 A retrospective study of tuberculosis outcomes in Gulf Province, Papua New Guinea Mek, M. Gale

research capacity: the experience of TB service P. Aia, S. S. Majumdar, W. Pomat, N. Tefuarani, S. M. Graham, P. Dakulala

Building operational research capacity in Papua

ORIGINAL ARTICLES

- 7-14 The emergency response to multidrug-L. Morris, S. Hiasihri, G. Chan, A. Honjepari, O. Tugo,
- E. K. Lavu, K. Johnson, J. Banamu, S. Pandey, R. Carter,
- Majumdar, K. C. Takarinda, R. J. Commons
- tuberculosis cases in Daru, Papua New Guinea
- Outcomes in children treated for tuberculosis
- I. Moses, S. Main, R. J. Commons, B. Robertson, A.

47-53 The effects of decentralisation of tuberculosis services in the East New Britain Province, Papua New Guinea A. Maha, S. S. Majumdar, S. Main, W. Phillip, K. Witari, J. Schulz, P. du Cros

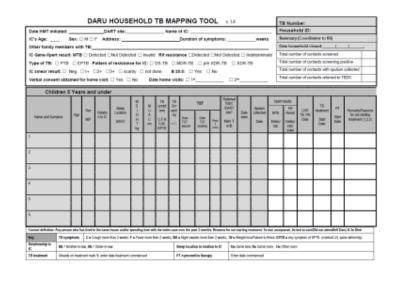
- 54-60 TB treatment delay associated with drug resistance and admission at Daru General Hospital in Papua New Guinea E. Hapolo, J. Ilai, T. Francis, P. du Cros, M. Taune, G. Chan
- 61-65 Challenges in TB diagnosis and treatment: the Kavieng Provincial Hospital experience, Papua New Guinea K. Sodeng, A. Botu, M. Semmie, M. Yoannes, H. D. Shewade, R. Commons, S. M. Graham, P. du Cros
- A mortality review of adult inpatients with 66-71 tuberculosis in Mendi, Papua New Guinea K. Vakadem, A. Anota, M. Sa'avu, C. Ramoni, L. Comrie-Thomson, M. Gale, R. J. Commons
- 72-76 Gaps in tuberculosis care in West Sepik Province of Papua New Guinea T. Kelebi, K. C. Takarinda, R. Commons, B. Sissai, J. Yowei, M. Gale
- 76-82 Successful implementation of bedaquiline for multidrug-resistant TB treatment in remote Papua New Guinea M. Taune, P. Ustero, S. Hiashiri, K. Huang, P. Aia, L. Morris, S. Main, G. Chan, P. du Cros, S. S. Majumdar2

SHORT COMMUNICATIONS

- 83-85 A pilot model of patient education and couselling for drug-resistant tuberculosis in Daru, Papua New Guinea T. Adepoyibi, T. Keam, A. Kuma, T. Haihuie, M. Hapolo, S. Islam, B. Akumu, K. Chani, L. Morris, M. Taune
- Tuberculosis treatment unmasking leprosy: 86-88 management of drug-resistant tuberculosis and leprosy co-infection G. Kama, G. K. L. Huang, M. Taune, R. Arura, L. Morris, B. Kombuk, A. Marome, D. P. O'Brien

Household contact screening and management Daru, Papua New Guinea 2018-2020

Household Contact Investigation - Implementation Timeline

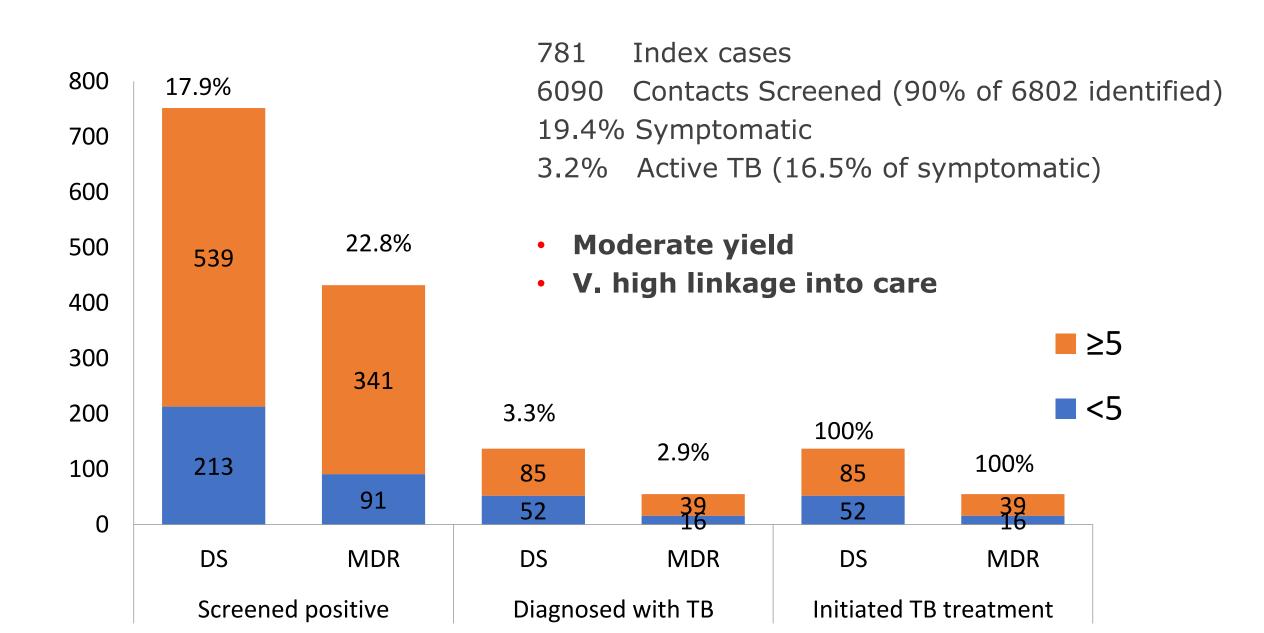

Start date	Activity
March 2016 – September 2017	Contact tracing began for XDR-TB and MDR-TB cases [*] Additional HR, tools developed
October 2017	Systematic contact tracing for DS-TB and provision of TPT (6H) to <5 contacts Community PT clinics established
2018	Systematic screening for active TB
November 2018	Community Engagement, Training, SOPs, Human Resources (educator, nurse)
January 2019	New TPT regimens under OR: 3RH for eligible DS-TB contacts & 6LFX for eligible MDR-TB contacts
March 2020	Contact investigation program stops due to COVID-19 pandemic
April 2022	Program Restarts post pandemic
November 2022	Scale-up of TPT to older children, adolescents & adults

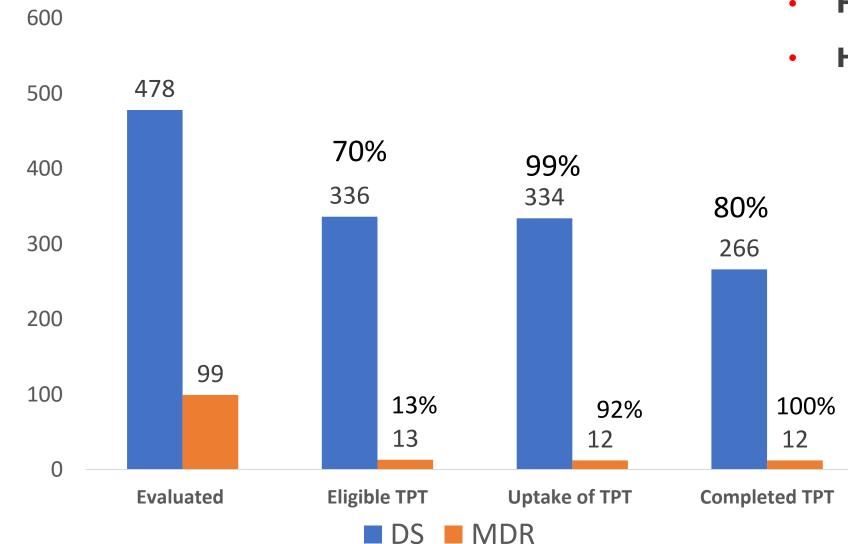
Implementation of the new model of care (2019)

Community Engagement

Tools and SOPs \rightarrow Electronic record system

Patient-centred education & counselling (peer-led model)



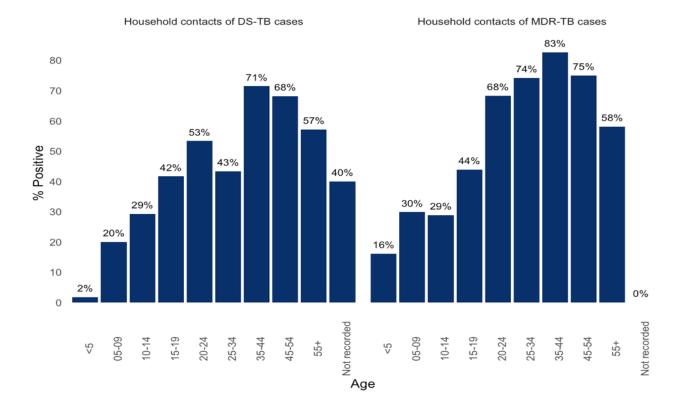

Tuberculin skin testing (TST) and novel regimens

Household contact screening in Daru. Oct 2017 – June 2020

TPT cascade of care for young child contacts per TPT regimen: 2017 – 2020

- High uptake (99%)
- High completion (82%)

TPT Outcomes for Child Contacts in Daru, Oct 2017 – Mar 2020 (n = 364)


ТРТ	Complete	Developed TB	Not complete	On treatment	Stopped by clinician	Total
6H	171 (78.5%)	0	34 (16.3%)	0	4	209
3RH	117 (81.8%)	0	24 (16.8%)	1	1	143
6Lfx	11 (91.7%)	0	0	1	0	12

- 82% Completion rate
- Well tolerated

Reasons for Non-completion				
Regimen	Total	Adverse Event	LTFU	Not recorded
6H	34	5	24	4
3RH	24	9	23	1
6Lfx	0	0	0	0
	58	14 (24%)	47 (81%)	5 (9%)

All AEs were Grade 1 and 2 (rash and gastrointestinal)

Age-related prevalence of infection in household contacts

DS-TB: 36% MDR-TB:47% TST+ TST+ (n=320) (n=562)

Suggests transmission is mainly outside households

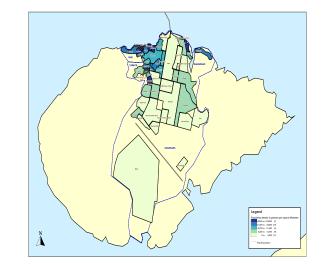
- High prevalence of LTBI in household contacts
 - Lower than expected in young children
 - Increases in adolescents
- Contacts have multiple index cases (DS and DR-TB)
- 20% of incident TB is MDR/RR-TB
 → household exposure doesn't not mean infection with same strain

Key findings

- Functional model of community-based household contact screening and management established with tools and protocols
- Good yield of active TB case detection in contacts, similar for contacts of DS and MDR TB cases, higher in young children
- High prevalence of infection (TST+) in MDR-TB household contacts increasing sharply with age
- High uptake and completion rate of PT
- To date, new regimens of 3RH and 6Lfx well tolerated

Challenges and considerations

Operational


- Human resources needed
 - Dedicated team, community-based model, task shifting
- TST supply

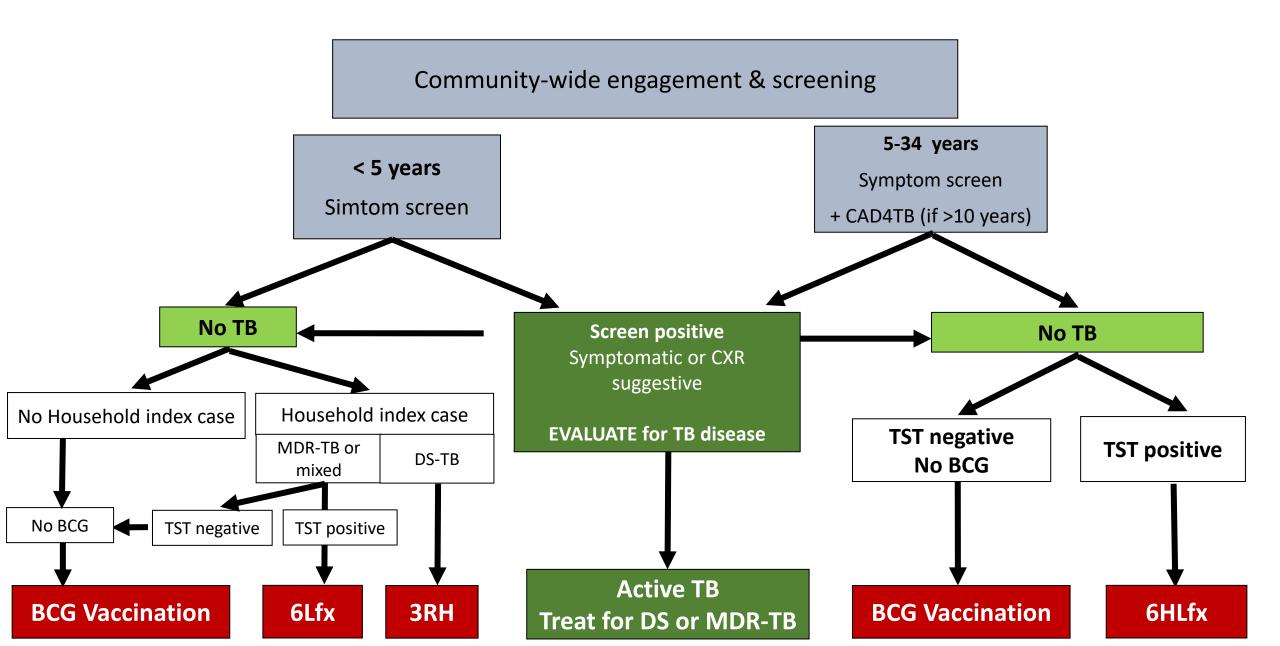
Social determinants

- Poverty, health literacy, food insecurity, service access
 - Engagement and building trust

Households, re-identification and drug-resistance

- Poor civil registration coverage
- Tracking of contacts across multiple visits / locations
 - Screening, evaluation, treatment
- Linkage of contacts to multiple index cases
- Large, multi-generational households based on kinship and population movement

Considerations for integrated detect-treat-prevent strategy by age


	< 5 years	5-14 years	15-34 years	35-54 years	55 years +	
Potential impact on transmission	Minimal +/-	+	+++	++	+	
Symptom screen	For all ages					
CXR if symptom screen negative	No	Uncertain	Yes			
Test for disease, sputum Xpert	<i>,</i> ,	natic (and CXR if available	From all – symptomatic, CXR abnormal and asymptomatic if able to provide			
Test for infection	Not required	Recommended for TPT				
TPT indicated	TB-exposed and asymptomatic	Evidence of TB infection Uncertain			rtain	
TPT preferred regimen	3RH or 6Lfx if MDR contact	Consider new regimen in high MDR setting: 6HLfx				
TPT safety	+++	+++	++	+	+	

Future directions – community wide intervention

SWEEP-TB Daru: Proposed screening and diagnostic approach to community implementation in a high transmission MDR-TB setting

SWEEP-TB Daru Systematic Island-Wide Engagement & Elimination Project for TB in Daru

HIMARA IMEHE GO TB KO'OMIRITI DARU RUDO

YUMI BUNG WANTAIM NA RAUSIM TB LONG DARU

TB elimination requires engagement and collaboration with the affected community

Engagement with Civil Society as the Driver for Change, WHO, 2020

Engagement
within our TB
work:Community
Advisory GroupCommunity
educationPeer education
and counsellingRepresentation
of people on
treatmentTB survivor
empowerment

Acknowledgement of the tireless work of the TB program staff and affected communities.

