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The speed at which most countries with high burdens of multidrug-
resistant tuberculosis (MDRTB) have scaled up their capacity to
diagnose and treat individuals with these forms of TB has failed to
keep pace with the problem. Limited availability of drug suscepti-
bility testing, high costs and inefficiencies in the supply of second-
line drugs, and inadequate capacity for themanagement of patients
with MDRTB have contributed to the wide gap between the
estimated need for and the delivery of MDRTB treatment. Themost
recent global estimates indicate that only about 1 in 20 individuals
with incident MDRTB will be properly diagnosed; fewer still receive
quality-assured treatment. As policy makers confront the threat of
growing levels of drug-resistant TB, there is a clear role for improved
surveillancemethods that can facilitatemore effective public health
responses. In countries that cannot yet test all incident cases fordrug
resistance, analysis of programmatic data and use of periodic,
efficient surveys can provide information to help prioritize the use
of limited resources to geographic areas or population subgroups of
greatest concern. We describemethods for the analysis of routinely
collected data and alternative surveys that can help tighten the link
between surveillance activities and interventions.
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Before 1994, systematically collected data on the global burden of
drug-resistant tuberculosis (DRTB) were not available. At that
time, in response to concern about the potential for drug resistance
to erode the effectiveness of the newly launched DOTS (directly
observed treatment short-course) strategy, the World Health Or-
ganization (WHO) and the International UnionAgainst Tubercu-
losis and Lung Diseases launched an ambitious project to
document the global burden of DRTB (1). Since 1994, 64 coun-
tries with capacity for comprehensive and continuous drug sus-
ceptibility testing (DST) have contributed surveillance data,
and 63 countries where continuous susceptibility testing is
not feasible have communicated the results of at least one
population-representative survey (2). Based on information

collected through these sources, the WHO estimated that there
were approximately 650,000 prevalent cases of multidrug-resistant
TB (MDRTB) among the estimated 12 million prevalent TB
cases in 2010 (3).

Despite global consensus on the importance of addressing
drug resistance, the implementation of interventions directed
at controlling the spread or amplification of DRTB has been
very slow. In 2010, less than 2% of treatment-naive and 6%
of treatment-experienced patients received a DST (3). Conse-
quences of this failure to scale up our response include poor
treatment outcomes for individuals with MDR disease (4),
acquisition of additional resistance while receiving ineffective
therapy (e.g., appearance of extremely DRTB) (5), and in-
creased opportunity for transmission of drug-resistant disease
in communities.

The slow pace of the response to DRTB has previously been
attributed to several causes, ranging from inefficient models of
care to lack of resources and political urgency (6). Here we sug-
gest an additional contributing cause of this sluggish reaction: we
believe that country-level policymakers do not have adequate
tools to inform them of the distribution of DRTB within their
jurisdictions. Currently implemented survey approaches typically
produce countrywide estimates of the proportion of incident TB
that is drug resistant (7). These population-representative surveys
have an important role in providing national data that are useful
for the global community and, if surveys can be repeated period-
ically, for understanding temporal trends in drug resistance at
a country level. However, because both the burden and drivers
of DRTB can differ markedly within the borders of a single
country, we believe that efforts to obtain information about sub-
national geographic variability of DRTB will also help support
the design of rational local responses (8).

For countries that have sufficient resources to test all microbi-
ologically confirmed TB cases for drug susceptibility, identifying
local variability in resistance does not require specialized methods
but does require the willingness to report and analyze disaggre-
gated data. However, for most countries with a large TB burden,
this level of screening is not feasible given current resource allo-
cations (2). In these settings, national TB program managers may
still be able to use program data, such as the local concentration
of cases requiring retreatment after standard first-line therapy, to
identify areas where MDRTB may be problematic. However,
informal use of such routinely collected data may not generate
reliable insight about the local risk of drug resistance, as there
can be other mechanisms unrelated to resistance that can create
local concentration of individuals requiring retreatment (e.g.,
high rates of reinfection). Accordingly, in countries where only
a subset of individuals is tested for resistance, alternative meth-
ods are needed to (1) systematically analyze programmatic data
to identify geographic areas of greatest concern, and (2) conduct
periodic surveys to determine local variability.
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This Pulmonary Perspective is divided into two sections to ad-
dress each of these objectives. First, we describe how spatial
analysis of routinely collected data (i.e., the observed data on
the distribution of drug resistance among those tested under nor-
mal program conditions) can be applied to identify areas where
risk of resistance is greatest among incident cases. Second, we
present an alternate survey approach that aims to classify subna-
tional areas according to specified thresholds. We present illustra-
tive examples of each of these two approaches from recent work.

IDENTIFYING “HOTSPOTS” OF DRUG RESISTANCE
USING PROGRAMMATIC DATA

National TB programs collect standardized data for patients identi-
fied at diagnostic facilities. Among other elements, these data typ-
ically include some information about the location of individuals
with TB (either in the form of home or clinic address), the type
of patient (e.g., treatment-naive or treatment-experienced), and in-
formation about drug susceptibility (when testing was obtained). In
principle, these data could be used to identify geographic clusters of
drug-resistant disease using one of several conventional statistical
methods to identify spatial patterns of disease within populations
(9–11). These cluster identification methods include both
“density-based methods” that aim to identify locations with rela-
tively high concentrations of individuals with drug-resistant disease
(e.g., Kulldorff scan statistic [12], kernel density estimation [13], and
generalized additive models [14]) and “distance-based methods”
that aim to identify areas where individuals with drug-resistant
disease are located more closely to each other than expected
(M-statistic of Bonetti and Pagano [15], the distance-based map-
ping statistic proposed by Jeffery [10], Local Moran’s I [16], and
the Getis-Ord statistic [17]). When all TB cases are observed
and all cases have been tested for drug susceptibility, applying
these cluster detection methods is straightforward. However,
when some resistant cases remain hidden because DST is not
universally available, cluster detection methods cannot be used
directly to identify hotspots of resistance.

This concern is illustrated in a previous analysis of data from
Lima, Peru, where the drug-resistance status for all notified TB
cases was not ascertained (18). Peru presents an important case
study because, despite the presence of what is regarded as a well-
functioning national TB program that has reduced the estimated
TB incidence by 3.3% per year since the mid-1990s, the incidence
of MDRTB was rising by 4.3% per year over the same period (2).
Between January 1, 2005 and December 31, 2007, there were 11,577
TB cases notified from community health centers within our study
area in Lima. Access to DST was limited to those at highest risk of
resistance (e.g., known contacts of MDR cases) or to those at high-
est risk of poor outcome if resistance was not diagnosed early (e.g.,
HIV-coinfected TB cases). Accordingly, only about 10% of notified
cases in this dataset received a DST. Among those tested, approx-
imately 21% of treatment-naive cases tested and 40% of treatment-
experienced patients had MDRTB; in total, 368 MDRTB cases
were detected. Crude applications of cluster detection techniques
to these data would identify areas where there are relatively high
numbers of tested and confirmed cases of MDRTB. However,
because access to DST was restricted, and those tested were not
a random subset of all TB cases, the observed pattern may
reflect the distribution of testing, not necessarily the distribution
of resistance.

To attempt to identify true hotspots of resistance from a data-
set in which the majority of cases did not have DST, we recently
proposed using adjusted cluster detection methods that incorpo-
rate additional information summarizing the estimated underly-
ing burden of undetected resistance and the usage patterns
of DST (19). Informed by a population-representative drug

resistance survey that had been done during the same time
frame of our study (20) and which we assumed was representa-
tive of our study population, a total of 5.23% of treatment-naive
patients and 24.22% of treatment-experienced patients would
have had MDRTB. Based on this survey, we inferred that the
programmatic testing targeted to high-risk individuals actually
captured less than 30% of MDRTB in our study area.

To attempt to adjust for underdetection of MDRTB, we sys-
tematically relabeled a subset of patients with TB who did not re-
ceive DST asMDRTB cases (19). In separate analyses of the Peru
data, we used two different assumptions to inform this relabeling
process: (1) unidentified cases of MDRTB were randomly dis-
tributed among untested individuals, and (2) unidentified cases of
MDRTB were more likely to occur in areas with sparse testing
(i.e., untested individuals from areas where relatively high pro-
portions of cases were tested were deemed lower risk). Based on
repeated augmentation of the data under these different assump-
tions, we obtained a qualitatively different picture of the local
risk of drug resistance than we did when we simply analyzed the
dataset that included only notified MDRTB cases. Predictably,
the first relabeling assumption resulted in low power to detect
clusters of resistance, because the process of random reassign-
ment masked any clustering that was actually present.

Furthermore, our reanalysis of these data from Lima suggests
that attempts to use measures of the local risk of retreatment as
a proxy for the local risk of drug resistance may be misleading.
We estimated that the area with the highest proportion of cases
requiring retreatment did have a relatively high overall burden
of multidrug resistant disease, but had a lower risk of multidrug
resistance among these retreatment cases than other areas of
Lima (19). This could be consistent with a local risk of reinfec-
tion with strains that were not MDR.

Although we believe that accounting for patterns of DST use
can help provide an improved understanding of the distribution
of MDRTB, these methods rely on the availability of additional
information about the distribution of and access to DST. Im-
proved estimates of both the burden of MDR that is not diag-
nosed and the reasons for differences in usage of DST can
greatly improve our ability to reliably correct for underdetection
when identifying hotspots using this type of augmented cluster
detection method.

USING CLASSIFICATION-BASED SURVEY APPROACHES
TO IDENTIFY GEOGRAPHIC HETEROGENEITY IN DRTB

Current WHO guidelines recommend that all previously treated
patients presenting with recurrent disease receive a DST at the
time of diagnosis. For countries that do not provide a DST for all
patients diagnosed with TB, the WHO and International Union
Against Tuberculosis and Lung Diseases advise periodic surveys
of representative samples of incident TB cases. Each of the rec-
ommended study designs offered in the guidelines shares the pri-
mary goal of generating a point estimate of the prevalence of
MDR among incident TB cases (7). We have previously argued
that this countrywide estimate may mask important heteroge-
neity and does not permit identification of geographic areas in
which TB cases are at relatively high risk of resistance (8, 21).

An alternative approach for survey design integrates lot quality
assurance sampling (LQAS) (22) into the WHO surveillance guide-
lines. In contrast to the standard survey methods that produce a
point estimate for an entire country, the objective of LQAS surveys
is to classify subregions into predefined categories (e.g., low/high
or low/moderate/high). Implementation of LQAS classification is
relatively straightforward. In the simplest static two-way LQAS
classification, samples from each area are collected and tested and
compared with a predetermined decision rule allowing for classifi-
cation of areas into either the “low” or “high” MDR category.
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The value of the additional information gained through the clas-
sifications was illustrated by a recent reanalysis of a DRTB surveil-
lance study conducted in Vietnam in 2001 (23). The original study
(24), conducted in accordance with standard guidelines, produced
an encouragingly low estimate of the fraction of treatment-naive
patients with MDRTB at the time of diagnosis of 1.8% (95%
confidence interval, 1.0–3.3%). In contrast, when we reanalyzed
the data as if it had been collected in an LQAS study, we found
one of the four areas with sufficient sample size for classification by
LQAS had a “high” MDRTB prevalence among new cases. On
further discussion of this finding with local investigators, this site
was noted to be worrisome because of its proximity to the Cambo-
dian border and groups previously identified to be at higher risk for
MDRTB and transnational migration (25).

To design a two-way LQAS system for detection of MDRTB
heterogeneity, several parameters must be chosen, namely: (1) pu,
the threshold for a “high” classification; (2) a, the allowable mis-
classification error at pu (the risk that an area truly at the high
threshold will be misclassified as “low”); (3) pl, the threshold for
a “low” classification; and (4) b, the allowable misclassification
error at pl (the risk that an area truly at the low threshold will be
misclassified as “high”) (23, 26). For the Vietnam example above,
the sample size and decision rules were set with a high MDRTB
threshold of 20% with less than 5% probability of misclassification
(pu ¼ 20%, a < 5%) and low MDRTB threshold of 5% with less
than 10% probability of misclassification (pl ¼ 5%, b < 10%).
Determining the thresholds and acceptable levels of misclassifi-
cation can be challenging and should depend both on the local
epidemiology and the types of interventions that will be used
based on the results of the study (e.g., universal DST or imple-
mentation of intensified infection control measures). Accordingly,
the design of LQAS studies ideally requires the involvement of
local policy makers; we consider this need for involvement of
decision-makers to be a strength of this approach, because this
should improve the link between surveillance activities and sub-
sequent public health responses.

CONCLUSIONS

All individuals with incident TB should have access toDST, because
universal testing will facilitate timely, appropriate treatment for
those who are unlikely to be cured with standard first-line regimens
(27). The introduction of new diagnostic tools offers hope for rapid
susceptibility testing at peripheral sites (28). However, until these
diagnostic tests are available everywhere, policymakers will need to
grapple with the challenging problem of deciding how best to scale
up responses to MDRTB given limited information and resources.
We believe that spatial analysis of programmatic data and surveys
intended to identify local heterogeneity are tools that can be used
to support these decisions. The availability of inexpensive hardware
for measuring and recording spatial data and freely available soft-
ware for analyzing spatial data should further increase the appeal of
these approaches.

Author disclosures are available with the text of this article at www.atsjournals.org.
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